Optimal. Leaf size=21 \[ -23-x-\log \left (2 x^2 \left (5+e^4+x\right )^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 17, normalized size of antiderivative = 0.81, number of steps used = 4, number of rules used = 3, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.088, Rules used = {6, 1593, 1820} \begin {gather*} -x-2 \log (x)-2 \log \left (x+e^4+5\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 1593
Rule 1820
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-10+e^4 (-2-x)-9 x-x^2}{\left (5+e^4\right ) x+x^2} \, dx\\ &=\int \frac {-10+e^4 (-2-x)-9 x-x^2}{x \left (5+e^4+x\right )} \, dx\\ &=\int \left (-1-\frac {2}{x}-\frac {2}{5+e^4+x}\right ) \, dx\\ &=-x-2 \log (x)-2 \log \left (5+e^4+x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 17, normalized size = 0.81 \begin {gather*} -x-2 \log (x)-2 \log \left (5+e^4+x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 18, normalized size = 0.86 \begin {gather*} -x - 2 \, \log \left (x^{2} + x e^{4} + 5 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 18, normalized size = 0.86 \begin {gather*} -x - 2 \, \log \left ({\left | x + e^{4} + 5 \right |}\right ) - 2 \, \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.39, size = 17, normalized size = 0.81
method | result | size |
default | \(-x -2 \ln \relax (x )-2 \ln \left ({\mathrm e}^{4}+x +5\right )\) | \(17\) |
norman | \(-x -2 \ln \relax (x )-2 \ln \left ({\mathrm e}^{4}+x +5\right )\) | \(17\) |
risch | \(-x -2 \ln \left (x^{2}+\left (5+{\mathrm e}^{4}\right ) x \right )\) | \(18\) |
meijerg | \(\left (-{\mathrm e}^{4}-9\right ) \ln \left (1+\frac {x}{5+{\mathrm e}^{4}}\right )-\left (5+{\mathrm e}^{4}\right ) \left (\frac {x}{5+{\mathrm e}^{4}}-\ln \left (1+\frac {x}{5+{\mathrm e}^{4}}\right )\right )-\frac {2 \,{\mathrm e}^{4} \left (\ln \relax (x )-\ln \left (5+{\mathrm e}^{4}\right )-\ln \left (1+\frac {x}{5+{\mathrm e}^{4}}\right )\right )}{5+{\mathrm e}^{4}}-\frac {10 \left (\ln \relax (x )-\ln \left (5+{\mathrm e}^{4}\right )-\ln \left (1+\frac {x}{5+{\mathrm e}^{4}}\right )\right )}{5+{\mathrm e}^{4}}\) | \(112\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 16, normalized size = 0.76 \begin {gather*} -x - 2 \, \log \left (x + e^{4} + 5\right ) - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.13, size = 17, normalized size = 0.81 \begin {gather*} -x-2\,\ln \left (x^2+\left ({\mathrm {e}}^4+5\right )\,x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 15, normalized size = 0.71 \begin {gather*} - x - 2 \log {\left (x^{2} + x \left (5 + e^{4}\right ) \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________