Optimal. Leaf size=30 \[ 2 x-e^{(-4+x) x^2} \left (2+x^2-\log \left (5-x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 4.63, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-10+2 x^2+e^{-4 x^2+x^3} \left (-68 x+30 x^2-26 x^3+9 x^4+8 x^5-3 x^6\right )+e^{-4 x^2+x^3} \left (40 x-15 x^2-8 x^3+3 x^4\right ) \log \left (5-x^2\right )}{-5+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2+\frac {e^{-4 x^2+x^3} x \left (68-30 x+26 x^2-9 x^3-8 x^4+3 x^5-40 \log \left (5-x^2\right )+15 x \log \left (5-x^2\right )+8 x^2 \log \left (5-x^2\right )-3 x^3 \log \left (5-x^2\right )\right )}{5-x^2}\right ) \, dx\\ &=2 x+\int \frac {e^{-4 x^2+x^3} x \left (68-30 x+26 x^2-9 x^3-8 x^4+3 x^5-40 \log \left (5-x^2\right )+15 x \log \left (5-x^2\right )+8 x^2 \log \left (5-x^2\right )-3 x^3 \log \left (5-x^2\right )\right )}{5-x^2} \, dx\\ &=2 x+\int \frac {e^{-4 x^2+x^3} x \left (68-30 x+26 x^2-9 x^3-8 x^4+3 x^5+\left (-40+15 x+8 x^2-3 x^3\right ) \log \left (5-x^2\right )\right )}{5-x^2} \, dx\\ &=2 x+\int \left (-\frac {e^{-4 x^2+x^3} x \left (68-30 x+26 x^2-9 x^3-8 x^4+3 x^5\right )}{-5+x^2}+e^{-4 x^2+x^3} x (-8+3 x) \log \left (5-x^2\right )\right ) \, dx\\ &=2 x-\int \frac {e^{-4 x^2+x^3} x \left (68-30 x+26 x^2-9 x^3-8 x^4+3 x^5\right )}{-5+x^2} \, dx+\int e^{-4 x^2+x^3} x (-8+3 x) \log \left (5-x^2\right ) \, dx\\ &=2 x+e^{-4 x^2+x^3} \log \left (5-x^2\right )-\int -\frac {2 e^{-4 x^2+x^3} x}{5-x^2} \, dx-\int \left (-14 e^{-4 x^2+x^3} x+6 e^{-4 x^2+x^3} x^2-8 e^{-4 x^2+x^3} x^3+3 e^{-4 x^2+x^3} x^4-\frac {2 e^{-4 x^2+x^3} x}{-5+x^2}\right ) \, dx\\ &=2 x+e^{-4 x^2+x^3} \log \left (5-x^2\right )+2 \int \frac {e^{-4 x^2+x^3} x}{5-x^2} \, dx+2 \int \frac {e^{-4 x^2+x^3} x}{-5+x^2} \, dx-3 \int e^{-4 x^2+x^3} x^4 \, dx-6 \int e^{-4 x^2+x^3} x^2 \, dx+8 \int e^{-4 x^2+x^3} x^3 \, dx+14 \int e^{-4 x^2+x^3} x \, dx\\ &=2 x+e^{-4 x^2+x^3} \log \left (5-x^2\right )+2 \int \left (\frac {e^{-4 x^2+x^3}}{2 \left (\sqrt {5}-x\right )}-\frac {e^{-4 x^2+x^3}}{2 \left (\sqrt {5}+x\right )}\right ) \, dx+2 \int \left (-\frac {e^{-4 x^2+x^3}}{2 \left (\sqrt {5}-x\right )}+\frac {e^{-4 x^2+x^3}}{2 \left (\sqrt {5}+x\right )}\right ) \, dx-3 \int e^{-4 x^2+x^3} x^4 \, dx-6 \int e^{-4 x^2+x^3} x^2 \, dx+8 \int e^{-4 x^2+x^3} x^3 \, dx+14 \int e^{-4 x^2+x^3} x \, dx\\ &=2 x+e^{-4 x^2+x^3} \log \left (5-x^2\right )-3 \int e^{-4 x^2+x^3} x^4 \, dx-6 \int e^{-4 x^2+x^3} x^2 \, dx+8 \int e^{-4 x^2+x^3} x^3 \, dx+14 \int e^{-4 x^2+x^3} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 38, normalized size = 1.27 \begin {gather*} 2 x-e^{(-4+x) x^2} \left (2+x^2\right )+e^{(-4+x) x^2} \log \left (5-x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.97, size = 40, normalized size = 1.33 \begin {gather*} -{\left (x^{2} + 2\right )} e^{\left (x^{3} - 4 \, x^{2}\right )} + e^{\left (x^{3} - 4 \, x^{2}\right )} \log \left (-x^{2} + 5\right ) + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 50, normalized size = 1.67 \begin {gather*} -x^{2} e^{\left (x^{3} - 4 \, x^{2}\right )} + e^{\left (x^{3} - 4 \, x^{2}\right )} \log \left (-x^{2} + 5\right ) + 2 \, x - 2 \, e^{\left (x^{3} - 4 \, x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.37, size = 45, normalized size = 1.50
method | result | size |
risch | \(-{\mathrm e}^{\left (x -4\right ) x^{2}} x^{2}+{\mathrm e}^{\left (x -4\right ) x^{2}} \ln \left (-x^{2}+5\right )+2 x -2 \,{\mathrm e}^{\left (x -4\right ) x^{2}}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.68, size = 37, normalized size = 1.23 \begin {gather*} -{\left ({\left (x^{2} + 2\right )} e^{\left (x^{3}\right )} - e^{\left (x^{3}\right )} \log \left (-x^{2} + 5\right )\right )} e^{\left (-4 \, x^{2}\right )} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {{\mathrm {e}}^{x^3-4\,x^2}\,\left (3\,x^6-8\,x^5-9\,x^4+26\,x^3-30\,x^2+68\,x\right )-2\,x^2-\ln \left (5-x^2\right )\,{\mathrm {e}}^{x^3-4\,x^2}\,\left (3\,x^4-8\,x^3-15\,x^2+40\,x\right )+10}{x^2-5} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.51, size = 24, normalized size = 0.80 \begin {gather*} 2 x + \left (- x^{2} + \log {\left (5 - x^{2} \right )} - 2\right ) e^{x^{3} - 4 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________