Optimal. Leaf size=23 \[ \frac {1}{4} x \left (-\frac {\log (8)}{x}+\log ^2\left (\frac {5}{x}+x\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.88, antiderivative size = 17, normalized size of antiderivative = 0.74, number of steps used = 35, number of rules used = 15, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.319, Rules used = {6725, 2528, 2523, 388, 203, 2526, 12, 446, 72, 4848, 2391, 4920, 4854, 2402, 2315} \begin {gather*} \frac {1}{4} x \log ^2\left (\frac {x^2+5}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 72
Rule 203
Rule 388
Rule 446
Rule 2315
Rule 2391
Rule 2402
Rule 2523
Rule 2526
Rule 2528
Rule 4848
Rule 4854
Rule 4920
Rule 6725
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {\left (-5+x^2\right ) \log \left (\frac {5+x^2}{x}\right )}{2 \left (5+x^2\right )}+\frac {1}{4} \log ^2\left (\frac {5+x^2}{x}\right )\right ) \, dx\\ &=\frac {1}{4} \int \log ^2\left (\frac {5+x^2}{x}\right ) \, dx+\frac {1}{2} \int \frac {\left (-5+x^2\right ) \log \left (\frac {5+x^2}{x}\right )}{5+x^2} \, dx\\ &=\frac {1}{4} x \log ^2\left (\frac {5+x^2}{x}\right )-\frac {1}{2} \int \frac {\left (-5+x^2\right ) \log \left (\frac {5+x^2}{x}\right )}{5+x^2} \, dx+\frac {1}{2} \int \left (\log \left (\frac {5+x^2}{x}\right )-\frac {10 \log \left (\frac {5+x^2}{x}\right )}{5+x^2}\right ) \, dx\\ &=\frac {1}{4} x \log ^2\left (\frac {5+x^2}{x}\right )+\frac {1}{2} \int \log \left (\frac {5+x^2}{x}\right ) \, dx-\frac {1}{2} \int \left (\log \left (\frac {5+x^2}{x}\right )-\frac {10 \log \left (\frac {5+x^2}{x}\right )}{5+x^2}\right ) \, dx-5 \int \frac {\log \left (\frac {5+x^2}{x}\right )}{5+x^2} \, dx\\ &=\frac {1}{2} x \log \left (\frac {5+x^2}{x}\right )-\sqrt {5} \tan ^{-1}\left (\frac {x}{\sqrt {5}}\right ) \log \left (\frac {5+x^2}{x}\right )+\frac {1}{4} x \log ^2\left (\frac {5+x^2}{x}\right )-\frac {1}{2} \int \frac {-5+x^2}{5+x^2} \, dx-\frac {1}{2} \int \log \left (\frac {5+x^2}{x}\right ) \, dx+5 \int \frac {\left (-5+x^2\right ) \tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )}{\sqrt {5} x \left (5+x^2\right )} \, dx+5 \int \frac {\log \left (\frac {5+x^2}{x}\right )}{5+x^2} \, dx\\ &=-\frac {x}{2}+\frac {1}{4} x \log ^2\left (\frac {5+x^2}{x}\right )+\frac {1}{2} \int \frac {-5+x^2}{5+x^2} \, dx+5 \int \frac {1}{5+x^2} \, dx-5 \int \frac {\left (-5+x^2\right ) \tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )}{\sqrt {5} x \left (5+x^2\right )} \, dx+\sqrt {5} \int \frac {\left (-5+x^2\right ) \tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )}{x \left (5+x^2\right )} \, dx\\ &=\sqrt {5} \tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )+\frac {1}{4} x \log ^2\left (\frac {5+x^2}{x}\right )-5 \int \frac {1}{5+x^2} \, dx-\sqrt {5} \int \frac {\left (-5+x^2\right ) \tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )}{x \left (5+x^2\right )} \, dx+\sqrt {5} \int \left (-\frac {\tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )}{x}+\frac {2 x \tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )}{5+x^2}\right ) \, dx\\ &=\frac {1}{4} x \log ^2\left (\frac {5+x^2}{x}\right )-\sqrt {5} \int \frac {\tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )}{x} \, dx-\sqrt {5} \int \left (-\frac {\tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )}{x}+\frac {2 x \tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )}{5+x^2}\right ) \, dx+\left (2 \sqrt {5}\right ) \int \frac {x \tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )}{5+x^2} \, dx\\ &=-i \sqrt {5} \tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )^2+\frac {1}{4} x \log ^2\left (\frac {5+x^2}{x}\right )-2 \int \frac {\tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )}{i-\frac {x}{\sqrt {5}}} \, dx-\frac {1}{2} \left (i \sqrt {5}\right ) \int \frac {\log \left (1-\frac {i x}{\sqrt {5}}\right )}{x} \, dx+\frac {1}{2} \left (i \sqrt {5}\right ) \int \frac {\log \left (1+\frac {i x}{\sqrt {5}}\right )}{x} \, dx+\sqrt {5} \int \frac {\tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )}{x} \, dx-\left (2 \sqrt {5}\right ) \int \frac {x \tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )}{5+x^2} \, dx\\ &=-2 \sqrt {5} \tan ^{-1}\left (\frac {x}{\sqrt {5}}\right ) \log \left (\frac {2 \sqrt {5}}{\sqrt {5}+i x}\right )+\frac {1}{4} x \log ^2\left (\frac {5+x^2}{x}\right )-\frac {1}{2} i \sqrt {5} \text {Li}_2\left (-\frac {i x}{\sqrt {5}}\right )+\frac {1}{2} i \sqrt {5} \text {Li}_2\left (\frac {i x}{\sqrt {5}}\right )+2 \int \frac {\tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )}{i-\frac {x}{\sqrt {5}}} \, dx+2 \int \frac {\log \left (\frac {2}{1+\frac {i x}{\sqrt {5}}}\right )}{1+\frac {x^2}{5}} \, dx+\frac {1}{2} \left (i \sqrt {5}\right ) \int \frac {\log \left (1-\frac {i x}{\sqrt {5}}\right )}{x} \, dx-\frac {1}{2} \left (i \sqrt {5}\right ) \int \frac {\log \left (1+\frac {i x}{\sqrt {5}}\right )}{x} \, dx\\ &=\frac {1}{4} x \log ^2\left (\frac {5+x^2}{x}\right )-2 \int \frac {\log \left (\frac {2}{1+\frac {i x}{\sqrt {5}}}\right )}{1+\frac {x^2}{5}} \, dx-\left (2 i \sqrt {5}\right ) \operatorname {Subst}\left (\int \frac {\log (2 x)}{1-2 x} \, dx,x,\frac {1}{1+\frac {i x}{\sqrt {5}}}\right )\\ &=\frac {1}{4} x \log ^2\left (\frac {5+x^2}{x}\right )-i \sqrt {5} \text {Li}_2\left (1-\frac {2 \sqrt {5}}{\sqrt {5}+i x}\right )+\left (2 i \sqrt {5}\right ) \operatorname {Subst}\left (\int \frac {\log (2 x)}{1-2 x} \, dx,x,\frac {1}{1+\frac {i x}{\sqrt {5}}}\right )\\ &=\frac {1}{4} x \log ^2\left (\frac {5+x^2}{x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 17, normalized size = 0.74 \begin {gather*} \frac {1}{4} x \log ^2\left (\frac {5+x^2}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 15, normalized size = 0.65 \begin {gather*} \frac {1}{4} \, x \log \left (\frac {x^{2} + 5}{x}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 15, normalized size = 0.65 \begin {gather*} \frac {1}{4} \, x \log \left (\frac {x^{2} + 5}{x}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.36, size = 16, normalized size = 0.70
method | result | size |
norman | \(\frac {x \ln \left (\frac {x^{2}+5}{x}\right )^{2}}{4}\) | \(16\) |
risch | \(\frac {x \ln \left (\frac {x^{2}+5}{x}\right )^{2}}{4}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.70, size = 30, normalized size = 1.30 \begin {gather*} \frac {1}{4} \, x \log \left (x^{2} + 5\right )^{2} - \frac {1}{2} \, x \log \left (x^{2} + 5\right ) \log \relax (x) + \frac {1}{4} \, x \log \relax (x)^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.96, size = 15, normalized size = 0.65 \begin {gather*} \frac {x\,{\ln \left (\frac {x^2+5}{x}\right )}^2}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 12, normalized size = 0.52 \begin {gather*} \frac {x \log {\left (\frac {x^{2} + 5}{x} \right )}^{2}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________