Optimal. Leaf size=29 \[ \frac {4 x \left (x^2+\frac {-1+\frac {e^x}{x}}{e^4+x}\right )}{2+x} \]
________________________________________________________________________________________
Rubi [B] time = 1.44, antiderivative size = 487, normalized size of antiderivative = 16.79, number of steps used = 22, number of rules used = 8, integrand size = 114, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.070, Rules used = {6688, 12, 6742, 88, 148, 2177, 2178, 1620} \begin {gather*} 4 x^2-16 \left (2+e^4\right ) x+16 e^4 x+24 x-\frac {4 e^x}{\left (2-e^4\right ) (x+2)}-\frac {32 e^8}{\left (2-e^4\right )^2 (x+2)}+\frac {136 e^4}{\left (2-e^4\right )^2 (x+2)}-\frac {144}{\left (2-e^4\right )^2 (x+2)}+\frac {8 e^4 \left (1+6 e^{12}-2 e^{16}\right )}{\left (2-e^4\right )^2 \left (x+e^4\right )}-\frac {8 e^{16} \left (3-e^4\right )}{\left (2-e^4\right )^2 \left (x+e^4\right )}+\frac {4 e^x}{\left (2-e^4\right ) \left (x+e^4\right )}+\frac {8 e^{20}}{\left (2-e^4\right )^2 \left (x+e^4\right )}-\frac {24 e^{16}}{\left (2-e^4\right )^2 \left (x+e^4\right )}-\frac {4 e^8}{\left (2-e^4\right )^2 \left (x+e^4\right )}-\frac {16 e^4 \left (9+4 e^4\right ) \log (x+2)}{\left (2-e^4\right )^3}-\frac {768 \left (1-e^4\right ) \log (x+2)}{\left (2-e^4\right )^3}+\frac {128 \left (6-5 e^4\right ) \log (x+2)}{\left (2-e^4\right )^3}+\frac {64 e^8 \log (x+2)}{\left (2-e^4\right )^3}+\frac {16 e^4 \log (x+2)}{\left (2-e^4\right )^3}+\frac {16 e^4 \left (1+18 e^8-11 e^{12}+2 e^{16}\right ) \log \left (x+e^4\right )}{\left (2-e^4\right )^3}-\frac {8 e^{12} \left (12-6 e^4+e^8\right ) \log \left (x+e^4\right )}{\left (2-e^4\right )^3}-\frac {48 e^{12} \left (4-e^4\right ) \log \left (x+e^4\right )}{\left (2-e^4\right )^3}+\frac {8 e^{16} \left (10-3 e^4\right ) \log \left (x+e^4\right )}{\left (2-e^4\right )^3}-\frac {16 e^4 \log \left (x+e^4\right )}{\left (2-e^4\right )^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 88
Rule 148
Rule 1620
Rule 2177
Rule 2178
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \left (x^2+6 x^4+2 x^5+e^{4+x} (1+x)+2 e^8 x^2 (3+x)+e^x \left (-2+x^2\right )+2 e^4 \left (-1+6 x^3+2 x^4\right )\right )}{(2+x)^2 \left (e^4+x\right )^2} \, dx\\ &=4 \int \frac {x^2+6 x^4+2 x^5+e^{4+x} (1+x)+2 e^8 x^2 (3+x)+e^x \left (-2+x^2\right )+2 e^4 \left (-1+6 x^3+2 x^4\right )}{(2+x)^2 \left (e^4+x\right )^2} \, dx\\ &=4 \int \left (\frac {x^2}{(2+x)^2 \left (e^4+x\right )^2}+\frac {6 x^4}{(2+x)^2 \left (e^4+x\right )^2}+\frac {2 x^5}{(2+x)^2 \left (e^4+x\right )^2}+\frac {2 e^8 x^2 (3+x)}{(2+x)^2 \left (e^4+x\right )^2}+\frac {e^x \left (-2+e^4+e^4 x+x^2\right )}{(2+x)^2 \left (e^4+x\right )^2}+\frac {2 e^4 \left (-1+6 x^3+2 x^4\right )}{(2+x)^2 \left (e^4+x\right )^2}\right ) \, dx\\ &=4 \int \frac {x^2}{(2+x)^2 \left (e^4+x\right )^2} \, dx+4 \int \frac {e^x \left (-2+e^4+e^4 x+x^2\right )}{(2+x)^2 \left (e^4+x\right )^2} \, dx+8 \int \frac {x^5}{(2+x)^2 \left (e^4+x\right )^2} \, dx+24 \int \frac {x^4}{(2+x)^2 \left (e^4+x\right )^2} \, dx+\left (8 e^4\right ) \int \frac {-1+6 x^3+2 x^4}{(2+x)^2 \left (e^4+x\right )^2} \, dx+\left (8 e^8\right ) \int \frac {x^2 (3+x)}{(2+x)^2 \left (e^4+x\right )^2} \, dx\\ &=4 \int \left (\frac {4}{\left (-2+e^4\right )^2 (2+x)^2}-\frac {4 e^4}{\left (-2+e^4\right )^3 (2+x)}+\frac {e^8}{\left (-2+e^4\right )^2 \left (e^4+x\right )^2}+\frac {4 e^4}{\left (-2+e^4\right )^3 \left (e^4+x\right )}\right ) \, dx+4 \int \left (-\frac {e^x}{\left (-2+e^4\right ) (2+x)^2}+\frac {e^x}{\left (-2+e^4\right ) (2+x)}+\frac {e^x}{\left (-2+e^4\right ) \left (e^4+x\right )^2}-\frac {e^x}{\left (-2+e^4\right ) \left (e^4+x\right )}\right ) \, dx+8 \int \left (-2 \left (2+e^4\right )+x-\frac {32}{\left (-2+e^4\right )^2 (2+x)^2}+\frac {16 \left (-6+5 e^4\right )}{\left (-2+e^4\right )^3 (2+x)}-\frac {e^{20}}{\left (-2+e^4\right )^2 \left (e^4+x\right )^2}+\frac {e^{16} \left (-10+3 e^4\right )}{\left (-2+e^4\right )^3 \left (e^4+x\right )}\right ) \, dx+24 \int \left (1+\frac {16}{\left (-2+e^4\right )^2 (2+x)^2}-\frac {32 \left (-1+e^4\right )}{\left (-2+e^4\right )^3 (2+x)}+\frac {e^{16}}{\left (-2+e^4\right )^2 \left (e^4+x\right )^2}-\frac {2 e^{12} \left (-4+e^4\right )}{\left (-2+e^4\right )^3 \left (e^4+x\right )}\right ) \, dx+\left (8 e^4\right ) \int \left (2-\frac {17}{\left (-2+e^4\right )^2 (2+x)^2}+\frac {2 \left (9+4 e^4\right )}{\left (-2+e^4\right )^3 (2+x)}+\frac {-1-6 e^{12}+2 e^{16}}{\left (-2+e^4\right )^2 \left (e^4+x\right )^2}-\frac {2 \left (1+18 e^8-11 e^{12}+2 e^{16}\right )}{\left (-2+e^4\right )^3 \left (e^4+x\right )}\right ) \, dx+\left (8 e^8\right ) \int \left (\frac {4}{\left (-2+e^4\right )^2 (2+x)^2}-\frac {8}{\left (-2+e^4\right )^3 (2+x)}-\frac {e^8 \left (-3+e^4\right )}{\left (-2+e^4\right )^2 \left (e^4+x\right )^2}+\frac {e^4 \left (12-6 e^4+e^8\right )}{\left (-2+e^4\right )^3 \left (e^4+x\right )}\right ) \, dx\\ &=24 x+16 e^4 x-16 \left (2+e^4\right ) x+4 x^2-\frac {144}{\left (2-e^4\right )^2 (2+x)}+\frac {136 e^4}{\left (2-e^4\right )^2 (2+x)}-\frac {32 e^8}{\left (2-e^4\right )^2 (2+x)}-\frac {4 e^8}{\left (2-e^4\right )^2 \left (e^4+x\right )}-\frac {24 e^{16}}{\left (2-e^4\right )^2 \left (e^4+x\right )}+\frac {8 e^{20}}{\left (2-e^4\right )^2 \left (e^4+x\right )}-\frac {8 e^{16} \left (3-e^4\right )}{\left (2-e^4\right )^2 \left (e^4+x\right )}+\frac {8 e^4 \left (1+6 e^{12}-2 e^{16}\right )}{\left (2-e^4\right )^2 \left (e^4+x\right )}+\frac {16 e^4 \log (2+x)}{\left (2-e^4\right )^3}+\frac {64 e^8 \log (2+x)}{\left (2-e^4\right )^3}+\frac {128 \left (6-5 e^4\right ) \log (2+x)}{\left (2-e^4\right )^3}-\frac {768 \left (1-e^4\right ) \log (2+x)}{\left (2-e^4\right )^3}-\frac {16 e^4 \left (9+4 e^4\right ) \log (2+x)}{\left (2-e^4\right )^3}-\frac {16 e^4 \log \left (e^4+x\right )}{\left (2-e^4\right )^3}+\frac {8 e^{16} \left (10-3 e^4\right ) \log \left (e^4+x\right )}{\left (2-e^4\right )^3}-\frac {48 e^{12} \left (4-e^4\right ) \log \left (e^4+x\right )}{\left (2-e^4\right )^3}-\frac {8 e^{12} \left (12-6 e^4+e^8\right ) \log \left (e^4+x\right )}{\left (2-e^4\right )^3}+\frac {16 e^4 \left (1+18 e^8-11 e^{12}+2 e^{16}\right ) \log \left (e^4+x\right )}{\left (2-e^4\right )^3}+\frac {4 \int \frac {e^x}{(2+x)^2} \, dx}{2-e^4}-\frac {4 \int \frac {e^x}{2+x} \, dx}{2-e^4}-\frac {4 \int \frac {e^x}{\left (e^4+x\right )^2} \, dx}{2-e^4}+\frac {4 \int \frac {e^x}{e^4+x} \, dx}{2-e^4}\\ &=24 x+16 e^4 x-16 \left (2+e^4\right ) x+4 x^2-\frac {144}{\left (2-e^4\right )^2 (2+x)}+\frac {136 e^4}{\left (2-e^4\right )^2 (2+x)}-\frac {32 e^8}{\left (2-e^4\right )^2 (2+x)}-\frac {4 e^x}{\left (2-e^4\right ) (2+x)}-\frac {4 e^8}{\left (2-e^4\right )^2 \left (e^4+x\right )}-\frac {24 e^{16}}{\left (2-e^4\right )^2 \left (e^4+x\right )}+\frac {8 e^{20}}{\left (2-e^4\right )^2 \left (e^4+x\right )}+\frac {4 e^x}{\left (2-e^4\right ) \left (e^4+x\right )}-\frac {8 e^{16} \left (3-e^4\right )}{\left (2-e^4\right )^2 \left (e^4+x\right )}+\frac {8 e^4 \left (1+6 e^{12}-2 e^{16}\right )}{\left (2-e^4\right )^2 \left (e^4+x\right )}-\frac {4 \text {Ei}(2+x)}{e^2 \left (2-e^4\right )}+\frac {4 e^{-e^4} \text {Ei}\left (e^4+x\right )}{2-e^4}+\frac {16 e^4 \log (2+x)}{\left (2-e^4\right )^3}+\frac {64 e^8 \log (2+x)}{\left (2-e^4\right )^3}+\frac {128 \left (6-5 e^4\right ) \log (2+x)}{\left (2-e^4\right )^3}-\frac {768 \left (1-e^4\right ) \log (2+x)}{\left (2-e^4\right )^3}-\frac {16 e^4 \left (9+4 e^4\right ) \log (2+x)}{\left (2-e^4\right )^3}-\frac {16 e^4 \log \left (e^4+x\right )}{\left (2-e^4\right )^3}+\frac {8 e^{16} \left (10-3 e^4\right ) \log \left (e^4+x\right )}{\left (2-e^4\right )^3}-\frac {48 e^{12} \left (4-e^4\right ) \log \left (e^4+x\right )}{\left (2-e^4\right )^3}-\frac {8 e^{12} \left (12-6 e^4+e^8\right ) \log \left (e^4+x\right )}{\left (2-e^4\right )^3}+\frac {16 e^4 \left (1+18 e^8-11 e^{12}+2 e^{16}\right ) \log \left (e^4+x\right )}{\left (2-e^4\right )^3}+\frac {4 \int \frac {e^x}{2+x} \, dx}{2-e^4}-\frac {4 \int \frac {e^x}{e^4+x} \, dx}{2-e^4}\\ &=24 x+16 e^4 x-16 \left (2+e^4\right ) x+4 x^2-\frac {144}{\left (2-e^4\right )^2 (2+x)}+\frac {136 e^4}{\left (2-e^4\right )^2 (2+x)}-\frac {32 e^8}{\left (2-e^4\right )^2 (2+x)}-\frac {4 e^x}{\left (2-e^4\right ) (2+x)}-\frac {4 e^8}{\left (2-e^4\right )^2 \left (e^4+x\right )}-\frac {24 e^{16}}{\left (2-e^4\right )^2 \left (e^4+x\right )}+\frac {8 e^{20}}{\left (2-e^4\right )^2 \left (e^4+x\right )}+\frac {4 e^x}{\left (2-e^4\right ) \left (e^4+x\right )}-\frac {8 e^{16} \left (3-e^4\right )}{\left (2-e^4\right )^2 \left (e^4+x\right )}+\frac {8 e^4 \left (1+6 e^{12}-2 e^{16}\right )}{\left (2-e^4\right )^2 \left (e^4+x\right )}+\frac {16 e^4 \log (2+x)}{\left (2-e^4\right )^3}+\frac {64 e^8 \log (2+x)}{\left (2-e^4\right )^3}+\frac {128 \left (6-5 e^4\right ) \log (2+x)}{\left (2-e^4\right )^3}-\frac {768 \left (1-e^4\right ) \log (2+x)}{\left (2-e^4\right )^3}-\frac {16 e^4 \left (9+4 e^4\right ) \log (2+x)}{\left (2-e^4\right )^3}-\frac {16 e^4 \log \left (e^4+x\right )}{\left (2-e^4\right )^3}+\frac {8 e^{16} \left (10-3 e^4\right ) \log \left (e^4+x\right )}{\left (2-e^4\right )^3}-\frac {48 e^{12} \left (4-e^4\right ) \log \left (e^4+x\right )}{\left (2-e^4\right )^3}-\frac {8 e^{12} \left (12-6 e^4+e^8\right ) \log \left (e^4+x\right )}{\left (2-e^4\right )^3}+\frac {16 e^4 \left (1+18 e^8-11 e^{12}+2 e^{16}\right ) \log \left (e^4+x\right )}{\left (2-e^4\right )^3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.52, size = 124, normalized size = 4.28 \begin {gather*} \frac {4 \left (4 e^x-4 e^{4+x}+e^{8+x}-2 e^{20} (2+x)-2 e^{16} \left (-6-x+x^2\right )+e^{12} x \left (12+6 x+x^2\right )+4 x \left (-9-4 x+x^3\right )+e^8 \left (32+15 x-4 x^3+x^4\right )-4 e^4 \left (8-5 x-4 x^2-x^3+x^4\right )\right )}{\left (-2+e^4\right )^2 (2+x) \left (e^4+x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.08, size = 42, normalized size = 1.45 \begin {gather*} \frac {4 \, {\left (x^{4} - 4 \, x^{2} + {\left (x^{3} - 4 \, x - 8\right )} e^{4} - 9 \, x + e^{x}\right )}}{x^{2} + {\left (x + 2\right )} e^{4} + 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.37, size = 48, normalized size = 1.66 \begin {gather*} \frac {4 \, {\left (x^{4} + x^{3} e^{4} - 4 \, x^{2} - 4 \, x e^{4} - 9 \, x - 8 \, e^{4} + e^{x}\right )}}{x^{2} + x e^{4} + 2 \, x + 2 \, e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.57, size = 33, normalized size = 1.14
method | result | size |
norman | \(\frac {-4 x +4 x^{4}+4 x^{3} {\mathrm e}^{4}+4 \,{\mathrm e}^{x}}{\left (2+x \right ) \left (x +{\mathrm e}^{4}\right )}\) | \(33\) |
risch | \(4 x^{2}-8 x +\frac {-32 \,{\mathrm e}^{4}-36 x}{x \,{\mathrm e}^{4}+x^{2}+2 \,{\mathrm e}^{4}+2 x}+\frac {4 \,{\mathrm e}^{x}}{x \,{\mathrm e}^{4}+x^{2}+2 \,{\mathrm e}^{4}+2 x}\) | \(57\) |
default | \(\frac {\frac {\left (-16-4 \,{\mathrm e}^{8}\right ) x}{-4 \,{\mathrm e}^{4}+4+{\mathrm e}^{8}}+\frac {2 \left (-8-4 \,{\mathrm e}^{4}\right ) {\mathrm e}^{4}}{-4 \,{\mathrm e}^{4}+4+{\mathrm e}^{8}}}{\left (2+x \right ) \left (x +{\mathrm e}^{4}\right )}+\frac {24 x^{3}-\frac {2 \left (48 \,{\mathrm e}^{12}+384-48 \,{\mathrm e}^{8}-96 \,{\mathrm e}^{4}\right ) {\mathrm e}^{4}}{-4 \,{\mathrm e}^{4}+4+{\mathrm e}^{8}}-\frac {\left (48 \,{\mathrm e}^{16}+768-48 \,{\mathrm e}^{12}-192 \,{\mathrm e}^{4}\right ) x}{-4 \,{\mathrm e}^{4}+4+{\mathrm e}^{8}}}{\left (2+x \right ) \left (x +{\mathrm e}^{4}\right )}+\frac {\left (-24-12 \,{\mathrm e}^{4}\right ) x^{3}+\frac {\left (24 \,{\mathrm e}^{20}-8 \,{\mathrm e}^{16}+768-48 \,{\mathrm e}^{12}-96 \,{\mathrm e}^{8}-64 \,{\mathrm e}^{4}\right ) x}{-4 \,{\mathrm e}^{4}+4+{\mathrm e}^{8}}+4 x^{4}+\frac {2 \left (24 \,{\mathrm e}^{16}-8 \,{\mathrm e}^{12}+384-96 \,{\mathrm e}^{8}-32 \,{\mathrm e}^{4}\right ) {\mathrm e}^{4}}{-4 \,{\mathrm e}^{4}+4+{\mathrm e}^{8}}}{\left (2+x \right ) \left (x +{\mathrm e}^{4}\right )}+\frac {\frac {16 \,{\mathrm e}^{4} x}{-4 \,{\mathrm e}^{4}+4+{\mathrm e}^{8}}+\frac {2 \left (4 \,{\mathrm e}^{4}+8\right ) {\mathrm e}^{4}}{-4 \,{\mathrm e}^{4}+4+{\mathrm e}^{8}}}{\left (2+x \right ) \left (x +{\mathrm e}^{4}\right )}+\frac {8 \,{\mathrm e}^{x} \left ({\mathrm e}^{4}+2 x +2\right )}{\left (-4 \,{\mathrm e}^{4}+4+{\mathrm e}^{8}\right ) \left (x \,{\mathrm e}^{4}+x^{2}+2 \,{\mathrm e}^{4}+2 x \right )}-\frac {8 \,{\mathrm e}^{4} {\mathrm e}^{-{\mathrm e}^{4}} \expIntegralEi \left (1, -{\mathrm e}^{4}-x \right )}{\left ({\mathrm e}^{4}-2\right ) \left (4 \,{\mathrm e}^{4}-4-{\mathrm e}^{8}\right )}-\frac {8 \left ({\mathrm e}^{4}-4\right ) {\mathrm e}^{-2} \expIntegralEi \left (1, -x -2\right )}{\left (4 \,{\mathrm e}^{4}-4-{\mathrm e}^{8}\right ) \left ({\mathrm e}^{4}-2\right )}+\frac {-\frac {2 \left (24 \,{\mathrm e}^{12}+48 \,{\mathrm e}^{8}\right ) {\mathrm e}^{4}}{-4 \,{\mathrm e}^{4}+4+{\mathrm e}^{8}}-\frac {\left (24 \,{\mathrm e}^{16}+96 \,{\mathrm e}^{8}\right ) x}{-4 \,{\mathrm e}^{4}+4+{\mathrm e}^{8}}}{\left (2+x \right ) \left (x +{\mathrm e}^{4}\right )}+\frac {\frac {\left (48 \,{\mathrm e}^{16}+384 \,{\mathrm e}^{4}\right ) x}{-4 \,{\mathrm e}^{4}+4+{\mathrm e}^{8}}+\frac {2 \left (48 \,{\mathrm e}^{12}+192 \,{\mathrm e}^{4}\right ) {\mathrm e}^{4}}{-4 \,{\mathrm e}^{4}+4+{\mathrm e}^{8}}}{\left (2+x \right ) \left (x +{\mathrm e}^{4}\right )}+\frac {\frac {\left (8 \,{\mathrm e}^{20}+64 \,{\mathrm e}^{8}\right ) x}{-4 \,{\mathrm e}^{4}+4+{\mathrm e}^{8}}+\frac {2 \left (8 \,{\mathrm e}^{16}+32 \,{\mathrm e}^{8}\right ) {\mathrm e}^{4}}{-4 \,{\mathrm e}^{4}+4+{\mathrm e}^{8}}}{\left (2+x \right ) \left (x +{\mathrm e}^{4}\right )}+\frac {16 x^{3} {\mathrm e}^{4}-\frac {2 \left (32 \,{\mathrm e}^{16}-32 \,{\mathrm e}^{12}-64 \,{\mathrm e}^{8}+256 \,{\mathrm e}^{4}\right ) {\mathrm e}^{4}}{-4 \,{\mathrm e}^{4}+4+{\mathrm e}^{8}}-\frac {\left (32 \,{\mathrm e}^{20}-32 \,{\mathrm e}^{16}-128 \,{\mathrm e}^{8}+512 \,{\mathrm e}^{4}\right ) x}{-4 \,{\mathrm e}^{4}+4+{\mathrm e}^{8}}}{\left (2+x \right ) \left (x +{\mathrm e}^{4}\right )}+4 \,{\mathrm e}^{4} \left (-\frac {{\mathrm e}^{x} \left ({\mathrm e}^{4}+2 x +2\right )}{\left (-4 \,{\mathrm e}^{4}+4+{\mathrm e}^{8}\right ) \left (x \,{\mathrm e}^{4}+x^{2}+2 \,{\mathrm e}^{4}+2 x \right )}+\frac {{\mathrm e}^{4} {\mathrm e}^{-{\mathrm e}^{4}} \expIntegralEi \left (1, -{\mathrm e}^{4}-x \right )}{\left ({\mathrm e}^{4}-2\right ) \left (4 \,{\mathrm e}^{4}-4-{\mathrm e}^{8}\right )}+\frac {\left ({\mathrm e}^{4}-4\right ) {\mathrm e}^{-2} \expIntegralEi \left (1, -x -2\right )}{\left (4 \,{\mathrm e}^{4}-4-{\mathrm e}^{8}\right ) \left ({\mathrm e}^{4}-2\right )}\right )-\frac {4 \,{\mathrm e}^{x} \left (x \,{\mathrm e}^{8}+2 \,{\mathrm e}^{8}+4 \,{\mathrm e}^{4}+4 x \right )}{\left (-4 \,{\mathrm e}^{4}+4+{\mathrm e}^{8}\right ) \left (x \,{\mathrm e}^{4}+x^{2}+2 \,{\mathrm e}^{4}+2 x \right )}+\frac {4 \left ({\mathrm e}^{8} {\mathrm e}^{4}-2 \,{\mathrm e}^{8}+4 \,{\mathrm e}^{4}\right ) {\mathrm e}^{-{\mathrm e}^{4}} \expIntegralEi \left (1, -{\mathrm e}^{4}-x \right )}{\left (4 \,{\mathrm e}^{4}-4-{\mathrm e}^{8}\right ) \left ({\mathrm e}^{4}-2\right )}-\frac {32 \,{\mathrm e}^{-2} \expIntegralEi \left (1, -x -2\right )}{\left ({\mathrm e}^{4}-2\right ) \left (4 \,{\mathrm e}^{4}-4-{\mathrm e}^{8}\right )}+4 \,{\mathrm e}^{4} \left (\frac {{\mathrm e}^{x} \left (x \,{\mathrm e}^{4}+4 \,{\mathrm e}^{4}+2 x \right )}{\left (-4 \,{\mathrm e}^{4}+4+{\mathrm e}^{8}\right ) \left (x \,{\mathrm e}^{4}+x^{2}+2 \,{\mathrm e}^{4}+2 x \right )}-\frac {\left ({\mathrm e}^{8}-{\mathrm e}^{4}+2\right ) {\mathrm e}^{-{\mathrm e}^{4}} \expIntegralEi \left (1, -{\mathrm e}^{4}-x \right )}{\left (4 \,{\mathrm e}^{4}-4-{\mathrm e}^{8}\right ) \left ({\mathrm e}^{4}-2\right )}-\frac {\left ({\mathrm e}^{4}-6\right ) {\mathrm e}^{-2} \expIntegralEi \left (1, -x -2\right )}{\left (4 \,{\mathrm e}^{4}-4-{\mathrm e}^{8}\right ) \left ({\mathrm e}^{4}-2\right )}\right )\) | \(1090\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 912, normalized size = 31.45 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.10, size = 55, normalized size = 1.90 \begin {gather*} \frac {4\,{\mathrm {e}}^x}{x^2+\left ({\mathrm {e}}^4+2\right )\,x+2\,{\mathrm {e}}^4}-8\,x-\frac {36\,x+32\,{\mathrm {e}}^4}{x^2+\left ({\mathrm {e}}^4+2\right )\,x+2\,{\mathrm {e}}^4}+4\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.77, size = 54, normalized size = 1.86 \begin {gather*} 4 x^{2} - 8 x + \frac {- 36 x - 32 e^{4}}{x^{2} + x \left (2 + e^{4}\right ) + 2 e^{4}} + \frac {4 e^{x}}{x^{2} + 2 x + x e^{4} + 2 e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________