3.85.100 2+x3x22xx2+x3dx

Optimal. Leaf size=23 log(log2(e2x)x(2+xx2)2)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 17, normalized size of antiderivative = 0.74, number of steps used = 3, number of rules used = 2, integrand size = 23, number of rulesintegrand size = 0.087, Rules used = {1594, 1628} 2log(2x)+log(x)2log(x+1)

Antiderivative was successfully verified.

[In]

Int[(-2 + x - 3*x^2)/(-2*x - x^2 + x^3),x]

[Out]

-2*Log[2 - x] + Log[x] - 2*Log[1 + x]

Rule 1594

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^
(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] && PosQ[r - p]

Rule 1628

Int[(Pq_)*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegra
nd[(d + e*x)^m*Pq*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && PolyQ[Pq, x] && IGtQ[p, -2]

Rubi steps

integral=2+x3x2x(2x+x2)dx=(22+x+1x21+x)dx=2log(2x)+log(x)2log(1+x)

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 14, normalized size = 0.61 log(x)2log(2+xx2)

Antiderivative was successfully verified.

[In]

Integrate[(-2 + x - 3*x^2)/(-2*x - x^2 + x^3),x]

[Out]

Log[x] - 2*Log[2 + x - x^2]

________________________________________________________________________________________

fricas [A]  time = 1.22, size = 14, normalized size = 0.61 2log(x2x2)+log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-3*x^2+x-2)/(x^3-x^2-2*x),x, algorithm="fricas")

[Out]

-2*log(x^2 - x - 2) + log(x)

________________________________________________________________________________________

giac [A]  time = 0.12, size = 18, normalized size = 0.78 2log(|x+1|)2log(|x2|)+log(|x|)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-3*x^2+x-2)/(x^3-x^2-2*x),x, algorithm="giac")

[Out]

-2*log(abs(x + 1)) - 2*log(abs(x - 2)) + log(abs(x))

________________________________________________________________________________________

maple [A]  time = 0.03, size = 15, normalized size = 0.65




method result size



risch ln(x)2ln(x2x2) 15
default ln(x)2ln(x2)2ln(x+1) 16
norman ln(x)2ln(x2)2ln(x+1) 16



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-3*x^2+x-2)/(x^3-x^2-2*x),x,method=_RETURNVERBOSE)

[Out]

ln(x)-2*ln(x^2-x-2)

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 15, normalized size = 0.65 2log(x+1)2log(x2)+log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-3*x^2+x-2)/(x^3-x^2-2*x),x, algorithm="maxima")

[Out]

-2*log(x + 1) - 2*log(x - 2) + log(x)

________________________________________________________________________________________

mupad [B]  time = 0.07, size = 14, normalized size = 0.61 ln(x)2ln(x2x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x^2 - x + 2)/(2*x + x^2 - x^3),x)

[Out]

log(x) - 2*log(x^2 - x - 2)

________________________________________________________________________________________

sympy [A]  time = 0.11, size = 12, normalized size = 0.52 log(x)2log(x2x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-3*x**2+x-2)/(x**3-x**2-2*x),x)

[Out]

log(x) - 2*log(x**2 - x - 2)

________________________________________________________________________________________