Optimal. Leaf size=31 \[ -x^2+\frac {x+x^2-\left (x-\log \left ((4-6 x)^2\right )\right )^2}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.41, antiderivative size = 54, normalized size of antiderivative = 1.74, number of steps used = 13, number of rules used = 11, integrand size = 63, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.175, Rules used = {1593, 6742, 698, 2411, 2344, 2301, 2317, 2391, 2397, 2394, 2315} \begin {gather*} -x^2-\frac {3}{2} \log ^2\left (4 (2-3 x)^2\right )-\frac {(2-3 x) \log ^2\left (4 (2-3 x)^2\right )}{2 x}+4 \log (2-3 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 698
Rule 1593
Rule 2301
Rule 2315
Rule 2317
Rule 2344
Rule 2391
Rule 2394
Rule 2397
Rule 2411
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {12 x^2+4 x^3-6 x^4-12 x \log \left (16-48 x+36 x^2\right )+(-2+3 x) \log ^2\left (16-48 x+36 x^2\right )}{x^2 (-2+3 x)} \, dx\\ &=\int \left (-\frac {2 \left (-6-2 x+3 x^2\right )}{-2+3 x}-\frac {12 \log \left (4 (2-3 x)^2\right )}{x (-2+3 x)}+\frac {\log ^2\left (4 (2-3 x)^2\right )}{x^2}\right ) \, dx\\ &=-\left (2 \int \frac {-6-2 x+3 x^2}{-2+3 x} \, dx\right )-12 \int \frac {\log \left (4 (2-3 x)^2\right )}{x (-2+3 x)} \, dx+\int \frac {\log ^2\left (4 (2-3 x)^2\right )}{x^2} \, dx\\ &=-\frac {(2-3 x) \log ^2\left (4 (2-3 x)^2\right )}{2 x}-2 \int \left (x-\frac {6}{-2+3 x}\right ) \, dx-4 \operatorname {Subst}\left (\int \frac {\log \left (4 x^2\right )}{\left (\frac {2}{3}-\frac {x}{3}\right ) x} \, dx,x,2-3 x\right )-6 \int \frac {\log \left (4 (2-3 x)^2\right )}{x} \, dx\\ &=-x^2+4 \log (2-3 x)-\frac {(2-3 x) \log ^2\left (4 (2-3 x)^2\right )}{2 x}-6 \log \left (4 (2-3 x)^2\right ) \log \left (\frac {3 x}{2}\right )-2 \operatorname {Subst}\left (\int \frac {\log \left (4 x^2\right )}{\frac {2}{3}-\frac {x}{3}} \, dx,x,2-3 x\right )-6 \operatorname {Subst}\left (\int \frac {\log \left (4 x^2\right )}{x} \, dx,x,2-3 x\right )-36 \int \frac {\log \left (\frac {3 x}{2}\right )}{2-3 x} \, dx\\ &=-x^2+4 \log (2-3 x)-\frac {3}{2} \log ^2\left (4 (2-3 x)^2\right )-\frac {(2-3 x) \log ^2\left (4 (2-3 x)^2\right )}{2 x}-12 \text {Li}_2\left (1-\frac {3 x}{2}\right )-12 \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {x}{2}\right )}{x} \, dx,x,2-3 x\right )\\ &=-x^2+4 \log (2-3 x)-\frac {3}{2} \log ^2\left (4 (2-3 x)^2\right )-\frac {(2-3 x) \log ^2\left (4 (2-3 x)^2\right )}{2 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 35, normalized size = 1.13 \begin {gather*} -x^2+2 \log \left (4 (2-3 x)^2\right )-\frac {\log ^2\left (4 (2-3 x)^2\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 36, normalized size = 1.16 \begin {gather*} -\frac {x^{3} - 2 \, x \log \left (36 \, x^{2} - 48 \, x + 16\right ) + \log \left (36 \, x^{2} - 48 \, x + 16\right )^{2}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 32, normalized size = 1.03 \begin {gather*} -x^{2} - \frac {\log \left (36 \, x^{2} - 48 \, x + 16\right )^{2}}{x} + 4 \, \log \left (3 \, x - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.38, size = 33, normalized size = 1.06
method | result | size |
risch | \(-\frac {\ln \left (36 x^{2}-48 x +16\right )^{2}}{x}-x^{2}+4 \ln \left (3 x -2\right )\) | \(33\) |
norman | \(\frac {-x^{3}-\ln \left (36 x^{2}-48 x +16\right )^{2}}{x}+4 \ln \left (3 x -2\right )\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 42, normalized size = 1.35 \begin {gather*} -x^{2} - \frac {4 \, {\left (\log \relax (2)^{2} + 2 \, \log \relax (2) \log \left (3 \, x - 2\right ) + \log \left (3 \, x - 2\right )^{2}\right )}}{x} + 4 \, \log \left (3 \, x - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.18, size = 34, normalized size = 1.10 \begin {gather*} 2\,\ln \left ({\left (3\,x-2\right )}^2\right )-\frac {{\ln \left (36\,x^2-48\,x+16\right )}^2}{x}-x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 26, normalized size = 0.84 \begin {gather*} - x^{2} + 4 \log {\left (3 x - 2 \right )} - \frac {\log {\left (36 x^{2} - 48 x + 16 \right )}^{2}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________