Optimal. Leaf size=21 \[ \frac {x^2}{\log \left (x+\frac {5 \log (6-\log (x))}{x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 4.54, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5 x+6 x^3-x^3 \log (x)+(-30 x+5 x \log (x)) \log (6-\log (x))+\left (-12 x^3+2 x^3 \log (x)+(-60 x+10 x \log (x)) \log (6-\log (x))\right ) \log \left (\frac {x^2+5 \log (6-\log (x))}{x}\right )}{\left (-6 x^2+x^2 \log (x)+(-30+5 \log (x)) \log (6-\log (x))\right ) \log ^2\left (\frac {x^2+5 \log (6-\log (x))}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 x-6 x^3+x^3 \log (x)-(-30 x+5 x \log (x)) \log (6-\log (x))-\left (-12 x^3+2 x^3 \log (x)+(-60 x+10 x \log (x)) \log (6-\log (x))\right ) \log \left (\frac {x^2+5 \log (6-\log (x))}{x}\right )}{(6-\log (x)) \left (x^2+5 \log (6-\log (x))\right ) \log ^2\left (x+\frac {5 \log (6-\log (x))}{x}\right )} \, dx\\ &=\int \frac {x \left (5-6 x^2+x^2 \log (x)-5 (-6+\log (x)) \log (6-\log (x))-2 (-6+\log (x)) \left (x^2+5 \log (6-\log (x))\right ) \log \left (x+\frac {5 \log (6-\log (x))}{x}\right )\right )}{(6-\log (x)) \left (x^2+5 \log (6-\log (x))\right ) \log ^2\left (x+\frac {5 \log (6-\log (x))}{x}\right )} \, dx\\ &=\int \left (-\frac {x \left (5-6 x^2+x^2 \log (x)+30 \log (6-\log (x))-5 \log (x) \log (6-\log (x))\right )}{(-6+\log (x)) \left (x^2+5 \log (6-\log (x))\right ) \log ^2\left (x+\frac {5 \log (6-\log (x))}{x}\right )}+\frac {2 x}{\log \left (x+\frac {5 \log (6-\log (x))}{x}\right )}\right ) \, dx\\ &=2 \int \frac {x}{\log \left (x+\frac {5 \log (6-\log (x))}{x}\right )} \, dx-\int \frac {x \left (5-6 x^2+x^2 \log (x)+30 \log (6-\log (x))-5 \log (x) \log (6-\log (x))\right )}{(-6+\log (x)) \left (x^2+5 \log (6-\log (x))\right ) \log ^2\left (x+\frac {5 \log (6-\log (x))}{x}\right )} \, dx\\ &=2 \int \frac {x}{\log \left (x+\frac {5 \log (6-\log (x))}{x}\right )} \, dx-\int \left (\frac {5 x}{(-6+\log (x)) \left (x^2+5 \log (6-\log (x))\right ) \log ^2\left (x+\frac {5 \log (6-\log (x))}{x}\right )}-\frac {6 x^3}{(-6+\log (x)) \left (x^2+5 \log (6-\log (x))\right ) \log ^2\left (x+\frac {5 \log (6-\log (x))}{x}\right )}+\frac {x^3 \log (x)}{(-6+\log (x)) \left (x^2+5 \log (6-\log (x))\right ) \log ^2\left (x+\frac {5 \log (6-\log (x))}{x}\right )}+\frac {30 x \log (6-\log (x))}{(-6+\log (x)) \left (x^2+5 \log (6-\log (x))\right ) \log ^2\left (x+\frac {5 \log (6-\log (x))}{x}\right )}-\frac {5 x \log (x) \log (6-\log (x))}{(-6+\log (x)) \left (x^2+5 \log (6-\log (x))\right ) \log ^2\left (x+\frac {5 \log (6-\log (x))}{x}\right )}\right ) \, dx\\ &=2 \int \frac {x}{\log \left (x+\frac {5 \log (6-\log (x))}{x}\right )} \, dx-5 \int \frac {x}{(-6+\log (x)) \left (x^2+5 \log (6-\log (x))\right ) \log ^2\left (x+\frac {5 \log (6-\log (x))}{x}\right )} \, dx+5 \int \frac {x \log (x) \log (6-\log (x))}{(-6+\log (x)) \left (x^2+5 \log (6-\log (x))\right ) \log ^2\left (x+\frac {5 \log (6-\log (x))}{x}\right )} \, dx+6 \int \frac {x^3}{(-6+\log (x)) \left (x^2+5 \log (6-\log (x))\right ) \log ^2\left (x+\frac {5 \log (6-\log (x))}{x}\right )} \, dx-30 \int \frac {x \log (6-\log (x))}{(-6+\log (x)) \left (x^2+5 \log (6-\log (x))\right ) \log ^2\left (x+\frac {5 \log (6-\log (x))}{x}\right )} \, dx-\int \frac {x^3 \log (x)}{(-6+\log (x)) \left (x^2+5 \log (6-\log (x))\right ) \log ^2\left (x+\frac {5 \log (6-\log (x))}{x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 21, normalized size = 1.00 \begin {gather*} \frac {x^2}{\log \left (x+\frac {5 \log (6-\log (x))}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 24, normalized size = 1.14 \begin {gather*} \frac {x^{2}}{\log \left (\frac {x^{2} + 5 \, \log \left (-\log \relax (x) + 6\right )}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.39, size = 25, normalized size = 1.19 \begin {gather*} \frac {x^{2}}{\log \left (x^{2} + 5 \, \log \left (-\log \relax (x) + 6\right )\right ) - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.12, size = 176, normalized size = 8.38
method | result | size |
risch | \(\frac {2 i x^{2}}{\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (5 \ln \left (-\ln \relax (x )+6\right )+x^{2}\right )\right ) \mathrm {csgn}\left (\frac {i \left (5 \ln \left (-\ln \relax (x )+6\right )+x^{2}\right )}{x}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (5 \ln \left (-\ln \relax (x )+6\right )+x^{2}\right )}{x}\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (5 \ln \left (-\ln \relax (x )+6\right )+x^{2}\right )\right ) \mathrm {csgn}\left (\frac {i \left (5 \ln \left (-\ln \relax (x )+6\right )+x^{2}\right )}{x}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left (5 \ln \left (-\ln \relax (x )+6\right )+x^{2}\right )}{x}\right )^{3}-2 i \ln \relax (x )+2 i \ln \left (5 \ln \left (-\ln \relax (x )+6\right )+x^{2}\right )}\) | \(176\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 25, normalized size = 1.19 \begin {gather*} \frac {x^{2}}{\log \left (x^{2} + 5 \, \log \left (-\log \relax (x) + 6\right )\right ) - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} -\int \frac {5\,x+x^3\,\ln \relax (x)+\ln \left (6-\ln \relax (x)\right )\,\left (30\,x-5\,x\,\ln \relax (x)\right )+\ln \left (\frac {5\,\ln \left (6-\ln \relax (x)\right )+x^2}{x}\right )\,\left (\ln \left (6-\ln \relax (x)\right )\,\left (60\,x-10\,x\,\ln \relax (x)\right )-2\,x^3\,\ln \relax (x)+12\,x^3\right )-6\,x^3}{{\ln \left (\frac {5\,\ln \left (6-\ln \relax (x)\right )+x^2}{x}\right )}^2\,\left (\ln \left (6-\ln \relax (x)\right )\,\left (5\,\ln \relax (x)-30\right )+x^2\,\ln \relax (x)-6\,x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.17, size = 17, normalized size = 0.81 \begin {gather*} \frac {x^{2}}{\log {\left (\frac {x^{2} + 5 \log {\left (6 - \log {\relax (x )} \right )}}{x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________