Optimal. Leaf size=26 \[ 2-3 x+\frac {\log (5)}{\log \left (\log \left (2+\left (4+e^2-x\right )^2+\log (4)\right )\right )} \]
________________________________________________________________________________________
Rubi [B] time = 1.05, antiderivative size = 265, normalized size of antiderivative = 10.19, number of steps used = 19, number of rules used = 8, integrand size = 168, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {6688, 6728, 703, 634, 618, 204, 628, 6686} \begin {gather*} -3 \left (4+e^2\right ) \log \left (x^2-2 \left (4+e^2\right ) x+e^4+8 e^2+18+\log (4)\right )+3 e^2 \log \left (x^2-2 \left (4+e^2\right ) x+e^4+8 e^2+18+\log (4)\right )+12 \log \left (x^2-2 \left (4+e^2\right ) x+e^4+8 e^2+18+\log (4)\right )+\frac {\log (5)}{\log \left (\log \left (x^2-2 \left (4+e^2\right ) x+e^4+8 e^2+18+\log (4)\right )\right )}-3 x-\frac {48 \left (4+e^2\right ) \tan ^{-1}\left (\frac {2 \left (-x+e^2+4\right )}{\sqrt {8+\log (256)}}\right )}{\sqrt {8+\log (256)}}-\frac {12 e^4 \tan ^{-1}\left (\frac {2 \left (-x+e^2+4\right )}{\sqrt {8+\log (256)}}\right )}{\sqrt {8+\log (256)}}+\frac {6 \left (18+e^4+\log (4)\right ) \tan ^{-1}\left (\frac {2 \left (-x+e^2+4\right )}{\sqrt {8+\log (256)}}\right )}{\sqrt {8+\log (256)}}+\frac {6 \left (14+8 e^2+e^4-\log (4)\right ) \tan ^{-1}\left (\frac {2 \left (-x+e^2+4\right )}{\sqrt {8+\log (256)}}\right )}{\sqrt {8+\log (256)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 204
Rule 618
Rule 628
Rule 634
Rule 703
Rule 6686
Rule 6688
Rule 6728
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {6 e^2 (-4+x)+24 x-3 x^2-54 \left (1+\frac {1}{18} \left (e^4+\log (4)\right )\right )+\frac {2 \left (4+e^2-x\right ) \log (5)}{\log \left (18+e^4-2 e^2 (-4+x)-8 x+x^2+\log (4)\right ) \log ^2\left (\log \left (18+e^4-2 e^2 (-4+x)-8 x+x^2+\log (4)\right )\right )}}{18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)} \, dx\\ &=\int \left (\frac {3 x^2}{-18-8 e^2-e^4+2 \left (4+e^2\right ) x-x^2-\log (4)}+\frac {6 e^2 (-4+x)}{18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)}+\frac {24 x}{18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)}+\frac {3 \left (-18-e^4-\log (4)\right )}{18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)}+\frac {2 \left (4+e^2-x\right ) \log (5)}{\left (18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)\right ) \log \left (18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)\right ) \log ^2\left (\log \left (18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)\right )\right )}\right ) \, dx\\ &=3 \int \frac {x^2}{-18-8 e^2-e^4+2 \left (4+e^2\right ) x-x^2-\log (4)} \, dx+24 \int \frac {x}{18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)} \, dx+\left (6 e^2\right ) \int \frac {-4+x}{18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)} \, dx-\left (3 \left (18+e^4+\log (4)\right )\right ) \int \frac {1}{18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)} \, dx+(2 \log (5)) \int \frac {4+e^2-x}{\left (18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)\right ) \log \left (18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)\right ) \log ^2\left (\log \left (18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)\right )\right )} \, dx\\ &=-3 x+\frac {\log (5)}{\log \left (\log \left (18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)\right )\right )}-3 \int \frac {18+8 e^2+e^4-2 \left (4+e^2\right ) x+\log (4)}{-18-8 e^2-e^4+2 \left (4+e^2\right ) x-x^2-\log (4)} \, dx+12 \int \frac {-2 \left (4+e^2\right )+2 x}{18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)} \, dx+\left (3 e^2\right ) \int \frac {-2 \left (4+e^2\right )+2 x}{18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)} \, dx+\left (6 e^4\right ) \int \frac {1}{18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)} \, dx+\left (24 \left (4+e^2\right )\right ) \int \frac {1}{18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)} \, dx+\left (6 \left (18+e^4+\log (4)\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-x^2-4 (2+\log (4))} \, dx,x,-2 \left (4+e^2\right )+2 x\right )\\ &=-3 x+\frac {6 \tan ^{-1}\left (\frac {2 \left (4+e^2-x\right )}{\sqrt {8+\log (256)}}\right ) \left (18+e^4+\log (4)\right )}{\sqrt {8+\log (256)}}+12 \log \left (18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)\right )+3 e^2 \log \left (18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)\right )+\frac {\log (5)}{\log \left (\log \left (18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)\right )\right )}-\left (12 e^4\right ) \operatorname {Subst}\left (\int \frac {1}{-x^2-4 (2+\log (4))} \, dx,x,-2 \left (4+e^2\right )+2 x\right )-\left (3 \left (4+e^2\right )\right ) \int \frac {2 \left (4+e^2\right )-2 x}{-18-8 e^2-e^4+2 \left (4+e^2\right ) x-x^2-\log (4)} \, dx-\left (48 \left (4+e^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-x^2-4 (2+\log (4))} \, dx,x,-2 \left (4+e^2\right )+2 x\right )+\left (3 \left (14+8 e^2+e^4-\log (4)\right )\right ) \int \frac {1}{-18-8 e^2-e^4+2 \left (4+e^2\right ) x-x^2-\log (4)} \, dx\\ &=-3 x-\frac {12 e^4 \tan ^{-1}\left (\frac {2 \left (4+e^2-x\right )}{\sqrt {8+\log (256)}}\right )}{\sqrt {8+\log (256)}}-\frac {48 \left (4+e^2\right ) \tan ^{-1}\left (\frac {2 \left (4+e^2-x\right )}{\sqrt {8+\log (256)}}\right )}{\sqrt {8+\log (256)}}+\frac {6 \tan ^{-1}\left (\frac {2 \left (4+e^2-x\right )}{\sqrt {8+\log (256)}}\right ) \left (18+e^4+\log (4)\right )}{\sqrt {8+\log (256)}}+12 \log \left (18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)\right )+3 e^2 \log \left (18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)\right )-3 \left (4+e^2\right ) \log \left (18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)\right )+\frac {\log (5)}{\log \left (\log \left (18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)\right )\right )}-\left (6 \left (14+8 e^2+e^4-\log (4)\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-x^2-4 (2+\log (4))} \, dx,x,2 \left (4+e^2\right )-2 x\right )\\ &=-3 x-\frac {12 e^4 \tan ^{-1}\left (\frac {2 \left (4+e^2-x\right )}{\sqrt {8+\log (256)}}\right )}{\sqrt {8+\log (256)}}-\frac {48 \left (4+e^2\right ) \tan ^{-1}\left (\frac {2 \left (4+e^2-x\right )}{\sqrt {8+\log (256)}}\right )}{\sqrt {8+\log (256)}}+\frac {6 \tan ^{-1}\left (\frac {2 \left (4+e^2-x\right )}{\sqrt {8+\log (256)}}\right ) \left (14+8 e^2+e^4-\log (4)\right )}{\sqrt {8+\log (256)}}+\frac {6 \tan ^{-1}\left (\frac {2 \left (4+e^2-x\right )}{\sqrt {8+\log (256)}}\right ) \left (18+e^4+\log (4)\right )}{\sqrt {8+\log (256)}}+12 \log \left (18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)\right )+3 e^2 \log \left (18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)\right )-3 \left (4+e^2\right ) \log \left (18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)\right )+\frac {\log (5)}{\log \left (\log \left (18+8 e^2+e^4-2 \left (4+e^2\right ) x+x^2+\log (4)\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 32, normalized size = 1.23 \begin {gather*} -3 x+\frac {\log (5)}{\log \left (\log \left (18+e^4-2 e^2 (-4+x)-8 x+x^2+\log (4)\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.66, size = 58, normalized size = 2.23 \begin {gather*} -\frac {3 \, x \log \left (\log \left (x^{2} - 2 \, {\left (x - 4\right )} e^{2} - 8 \, x + e^{4} + 2 \, \log \relax (2) + 18\right )\right ) - \log \relax (5)}{\log \left (\log \left (x^{2} - 2 \, {\left (x - 4\right )} e^{2} - 8 \, x + e^{4} + 2 \, \log \relax (2) + 18\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 2.73, size = 62, normalized size = 2.38 \begin {gather*} -\frac {3 \, x \log \left (\log \left (x^{2} - 2 \, x e^{2} - 8 \, x + e^{4} + 8 \, e^{2} + 2 \, \log \relax (2) + 18\right )\right ) - \log \relax (5)}{\log \left (\log \left (x^{2} - 2 \, x e^{2} - 8 \, x + e^{4} + 8 \, e^{2} + 2 \, \log \relax (2) + 18\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.83, size = 34, normalized size = 1.31
method | result | size |
risch | \(-3 x +\frac {\ln \relax (5)}{\ln \left (\ln \left (2 \ln \relax (2)+{\mathrm e}^{4}+\left (-2 x +8\right ) {\mathrm e}^{2}+x^{2}-8 x +18\right )\right )}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.52, size = 60, normalized size = 2.31 \begin {gather*} -\frac {3 \, x \log \left (\log \left (x^{2} - 2 \, x {\left (e^{2} + 4\right )} + e^{4} + 8 \, e^{2} + 2 \, \log \relax (2) + 18\right )\right ) - \log \relax (5)}{\log \left (\log \left (x^{2} - 2 \, x {\left (e^{2} + 4\right )} + e^{4} + 8 \, e^{2} + 2 \, \log \relax (2) + 18\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.23, size = 34, normalized size = 1.31 \begin {gather*} \frac {\ln \relax (5)}{\ln \left (\ln \left (8\,{\mathrm {e}}^2-8\,x+{\mathrm {e}}^4+2\,\ln \relax (2)-2\,x\,{\mathrm {e}}^2+x^2+18\right )\right )}-3\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.71, size = 34, normalized size = 1.31 \begin {gather*} - 3 x + \frac {\log {\relax (5 )}}{\log {\left (\log {\left (x^{2} - 8 x + \left (8 - 2 x\right ) e^{2} + 2 \log {\relax (2 )} + 18 + e^{4} \right )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________