Optimal. Leaf size=32 \[ \frac {3 \left (x+\frac {1}{4} \left (x+\frac {4}{\log \left (1+x^2\right )}\right )\right )^2}{(3-x) x} \]
________________________________________________________________________________________
Rubi [F] time = 2.33, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-576 x^2+192 x^3+\left (-144+96 x-144 x^2-624 x^3+240 x^4\right ) \log \left (1+x^2\right )+\left (120 x^2+120 x^4\right ) \log ^2\left (1+x^2\right )+\left (225 x^2+225 x^4\right ) \log ^3\left (1+x^2\right )}{\left (144 x^2-96 x^3+160 x^4-96 x^5+16 x^6\right ) \log ^3\left (1+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-576 x^2+192 x^3+\left (-144+96 x-144 x^2-624 x^3+240 x^4\right ) \log \left (1+x^2\right )+\left (120 x^2+120 x^4\right ) \log ^2\left (1+x^2\right )+\left (225 x^2+225 x^4\right ) \log ^3\left (1+x^2\right )}{16 (3-x)^2 x^2 \left (1+x^2\right ) \log ^3\left (1+x^2\right )} \, dx\\ &=\frac {1}{16} \int \frac {-576 x^2+192 x^3+\left (-144+96 x-144 x^2-624 x^3+240 x^4\right ) \log \left (1+x^2\right )+\left (120 x^2+120 x^4\right ) \log ^2\left (1+x^2\right )+\left (225 x^2+225 x^4\right ) \log ^3\left (1+x^2\right )}{(3-x)^2 x^2 \left (1+x^2\right ) \log ^3\left (1+x^2\right )} \, dx\\ &=\frac {1}{16} \int \left (\frac {225}{(-3+x)^2}+\frac {192}{(-3+x) \left (1+x^2\right ) \log ^3\left (1+x^2\right )}+\frac {48 \left (-3+2 x-3 x^2-13 x^3+5 x^4\right )}{(-3+x)^2 x^2 \left (1+x^2\right ) \log ^2\left (1+x^2\right )}+\frac {120}{(-3+x)^2 \log \left (1+x^2\right )}\right ) \, dx\\ &=\frac {225}{16 (3-x)}+3 \int \frac {-3+2 x-3 x^2-13 x^3+5 x^4}{(-3+x)^2 x^2 \left (1+x^2\right ) \log ^2\left (1+x^2\right )} \, dx+\frac {15}{2} \int \frac {1}{(-3+x)^2 \log \left (1+x^2\right )} \, dx+12 \int \frac {1}{(-3+x) \left (1+x^2\right ) \log ^3\left (1+x^2\right )} \, dx\\ &=\frac {225}{16 (3-x)}+3 \int \left (\frac {1}{3 (-3+x)^2 \log ^2\left (1+x^2\right )}+\frac {3}{2 (-3+x) \log ^2\left (1+x^2\right )}-\frac {1}{3 x^2 \log ^2\left (1+x^2\right )}+\frac {1-3 x}{2 \left (1+x^2\right ) \log ^2\left (1+x^2\right )}\right ) \, dx+\frac {15}{2} \int \frac {1}{(-3+x)^2 \log \left (1+x^2\right )} \, dx+12 \int \left (\frac {1}{10 (-3+x) \log ^3\left (1+x^2\right )}+\frac {-3-x}{10 \left (1+x^2\right ) \log ^3\left (1+x^2\right )}\right ) \, dx\\ &=\frac {225}{16 (3-x)}+\frac {6}{5} \int \frac {1}{(-3+x) \log ^3\left (1+x^2\right )} \, dx+\frac {6}{5} \int \frac {-3-x}{\left (1+x^2\right ) \log ^3\left (1+x^2\right )} \, dx+\frac {3}{2} \int \frac {1-3 x}{\left (1+x^2\right ) \log ^2\left (1+x^2\right )} \, dx+\frac {9}{2} \int \frac {1}{(-3+x) \log ^2\left (1+x^2\right )} \, dx+\frac {15}{2} \int \frac {1}{(-3+x)^2 \log \left (1+x^2\right )} \, dx+\int \frac {1}{(-3+x)^2 \log ^2\left (1+x^2\right )} \, dx-\int \frac {1}{x^2 \log ^2\left (1+x^2\right )} \, dx\\ &=\frac {225}{16 (3-x)}+\frac {6}{5} \int \left (-\frac {3}{\left (1+x^2\right ) \log ^3\left (1+x^2\right )}-\frac {x}{\left (1+x^2\right ) \log ^3\left (1+x^2\right )}\right ) \, dx+\frac {6}{5} \int \frac {1}{(-3+x) \log ^3\left (1+x^2\right )} \, dx+\frac {3}{2} \int \left (\frac {1}{\left (1+x^2\right ) \log ^2\left (1+x^2\right )}-\frac {3 x}{\left (1+x^2\right ) \log ^2\left (1+x^2\right )}\right ) \, dx+\frac {9}{2} \int \frac {1}{(-3+x) \log ^2\left (1+x^2\right )} \, dx+\frac {15}{2} \int \frac {1}{(-3+x)^2 \log \left (1+x^2\right )} \, dx+\int \frac {1}{(-3+x)^2 \log ^2\left (1+x^2\right )} \, dx-\int \frac {1}{x^2 \log ^2\left (1+x^2\right )} \, dx\\ &=\frac {225}{16 (3-x)}+\frac {6}{5} \int \frac {1}{(-3+x) \log ^3\left (1+x^2\right )} \, dx-\frac {6}{5} \int \frac {x}{\left (1+x^2\right ) \log ^3\left (1+x^2\right )} \, dx+\frac {3}{2} \int \frac {1}{\left (1+x^2\right ) \log ^2\left (1+x^2\right )} \, dx-\frac {18}{5} \int \frac {1}{\left (1+x^2\right ) \log ^3\left (1+x^2\right )} \, dx+\frac {9}{2} \int \frac {1}{(-3+x) \log ^2\left (1+x^2\right )} \, dx-\frac {9}{2} \int \frac {x}{\left (1+x^2\right ) \log ^2\left (1+x^2\right )} \, dx+\frac {15}{2} \int \frac {1}{(-3+x)^2 \log \left (1+x^2\right )} \, dx+\int \frac {1}{(-3+x)^2 \log ^2\left (1+x^2\right )} \, dx-\int \frac {1}{x^2 \log ^2\left (1+x^2\right )} \, dx\\ &=\frac {225}{16 (3-x)}-\frac {3}{5} \operatorname {Subst}\left (\int \frac {1}{(1+x) \log ^3(1+x)} \, dx,x,x^2\right )+\frac {6}{5} \int \frac {1}{(-3+x) \log ^3\left (1+x^2\right )} \, dx+\frac {3}{2} \int \frac {1}{\left (1+x^2\right ) \log ^2\left (1+x^2\right )} \, dx-\frac {9}{4} \operatorname {Subst}\left (\int \frac {1}{(1+x) \log ^2(1+x)} \, dx,x,x^2\right )-\frac {18}{5} \int \frac {1}{\left (1+x^2\right ) \log ^3\left (1+x^2\right )} \, dx+\frac {9}{2} \int \frac {1}{(-3+x) \log ^2\left (1+x^2\right )} \, dx+\frac {15}{2} \int \frac {1}{(-3+x)^2 \log \left (1+x^2\right )} \, dx+\int \frac {1}{(-3+x)^2 \log ^2\left (1+x^2\right )} \, dx-\int \frac {1}{x^2 \log ^2\left (1+x^2\right )} \, dx\\ &=\frac {225}{16 (3-x)}-\frac {3}{5} \operatorname {Subst}\left (\int \frac {1}{x \log ^3(x)} \, dx,x,1+x^2\right )+\frac {6}{5} \int \frac {1}{(-3+x) \log ^3\left (1+x^2\right )} \, dx+\frac {3}{2} \int \frac {1}{\left (1+x^2\right ) \log ^2\left (1+x^2\right )} \, dx-\frac {9}{4} \operatorname {Subst}\left (\int \frac {1}{x \log ^2(x)} \, dx,x,1+x^2\right )-\frac {18}{5} \int \frac {1}{\left (1+x^2\right ) \log ^3\left (1+x^2\right )} \, dx+\frac {9}{2} \int \frac {1}{(-3+x) \log ^2\left (1+x^2\right )} \, dx+\frac {15}{2} \int \frac {1}{(-3+x)^2 \log \left (1+x^2\right )} \, dx+\int \frac {1}{(-3+x)^2 \log ^2\left (1+x^2\right )} \, dx-\int \frac {1}{x^2 \log ^2\left (1+x^2\right )} \, dx\\ &=\frac {225}{16 (3-x)}-\frac {3}{5} \operatorname {Subst}\left (\int \frac {1}{x^3} \, dx,x,\log \left (1+x^2\right )\right )+\frac {6}{5} \int \frac {1}{(-3+x) \log ^3\left (1+x^2\right )} \, dx+\frac {3}{2} \int \frac {1}{\left (1+x^2\right ) \log ^2\left (1+x^2\right )} \, dx-\frac {9}{4} \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log \left (1+x^2\right )\right )-\frac {18}{5} \int \frac {1}{\left (1+x^2\right ) \log ^3\left (1+x^2\right )} \, dx+\frac {9}{2} \int \frac {1}{(-3+x) \log ^2\left (1+x^2\right )} \, dx+\frac {15}{2} \int \frac {1}{(-3+x)^2 \log \left (1+x^2\right )} \, dx+\int \frac {1}{(-3+x)^2 \log ^2\left (1+x^2\right )} \, dx-\int \frac {1}{x^2 \log ^2\left (1+x^2\right )} \, dx\\ &=\frac {225}{16 (3-x)}+\frac {3}{10 \log ^2\left (1+x^2\right )}+\frac {9}{4 \log \left (1+x^2\right )}+\frac {6}{5} \int \frac {1}{(-3+x) \log ^3\left (1+x^2\right )} \, dx+\frac {3}{2} \int \frac {1}{\left (1+x^2\right ) \log ^2\left (1+x^2\right )} \, dx-\frac {18}{5} \int \frac {1}{\left (1+x^2\right ) \log ^3\left (1+x^2\right )} \, dx+\frac {9}{2} \int \frac {1}{(-3+x) \log ^2\left (1+x^2\right )} \, dx+\frac {15}{2} \int \frac {1}{(-3+x)^2 \log \left (1+x^2\right )} \, dx+\int \frac {1}{(-3+x)^2 \log ^2\left (1+x^2\right )} \, dx-\int \frac {1}{x^2 \log ^2\left (1+x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 45, normalized size = 1.41 \begin {gather*} \frac {3}{16} \left (-\frac {75}{-3+x}-\frac {16}{(-3+x) x \log ^2\left (1+x^2\right )}-\frac {40}{(-3+x) \log \left (1+x^2\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 41, normalized size = 1.28 \begin {gather*} -\frac {3 \, {\left (75 \, x \log \left (x^{2} + 1\right )^{2} + 40 \, x \log \left (x^{2} + 1\right ) + 16\right )}}{16 \, {\left (x^{2} - 3 \, x\right )} \log \left (x^{2} + 1\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 47, normalized size = 1.47 \begin {gather*} -\frac {3 \, {\left (5 \, x \log \left (x^{2} + 1\right ) + 2\right )}}{2 \, {\left (x^{2} \log \left (x^{2} + 1\right )^{2} - 3 \, x \log \left (x^{2} + 1\right )^{2}\right )}} - \frac {225}{16 \, {\left (x - 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 38, normalized size = 1.19
method | result | size |
risch | \(-\frac {225}{16 \left (x -3\right )}-\frac {3 \left (5 x \ln \left (x^{2}+1\right )+2\right )}{2 x \left (x -3\right ) \ln \left (x^{2}+1\right )^{2}}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 41, normalized size = 1.28 \begin {gather*} -\frac {3 \, {\left (75 \, x \log \left (x^{2} + 1\right )^{2} + 40 \, x \log \left (x^{2} + 1\right ) + 16\right )}}{16 \, {\left (x^{2} - 3 \, x\right )} \log \left (x^{2} + 1\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.57, size = 313, normalized size = 9.78 \begin {gather*} \frac {\frac {165\,x^7}{16}-\frac {573\,x^6}{8}+\frac {1911\,x^5}{16}+\frac {153\,x^4}{8}-\frac {27\,x^3}{2}+\frac {33\,x^2}{2}-\frac {81\,x}{8}+\frac {81}{8}}{-x^8+9\,x^7-27\,x^6+27\,x^5}-\frac {\frac {3\,\left (5\,x^4-17\,x^3+3\,x^2-2\,x+3\right )}{4\,x^3\,{\left (x-3\right )}^2}+\frac {3\,\ln \left (x^2+1\right )\,\left (x^2+1\right )\,\left (5\,x^5-19\,x^4+9\,x^3-17\,x^2+27\,x-27\right )}{8\,x^5\,{\left (x-3\right )}^3}-\frac {15\,{\ln \left (x^2+1\right )}^2\,\left (x^2+1\right )\,\left (x^3+3\,x^2+3\,x-3\right )}{16\,x^3\,{\left (x-3\right )}^3}}{\ln \left (x^2+1\right )}-\frac {\frac {3}{x\,\left (x-3\right )}+\frac {15\,{\ln \left (x^2+1\right )}^2\,\left (x^2+1\right )}{8\,x\,{\left (x-3\right )}^2}-\frac {3\,\ln \left (x^2+1\right )\,\left (-5\,x^4+13\,x^3+3\,x^2-2\,x+3\right )}{4\,x^3\,{\left (x-3\right )}^2}}{{\ln \left (x^2+1\right )}^2}+\frac {\ln \left (x^2+1\right )\,\left (\frac {15\,x^5}{16}+\frac {45\,x^4}{16}+\frac {15\,x^3}{4}+\frac {45\,x}{16}-\frac {45}{16}\right )}{-x^6+9\,x^5-27\,x^4+27\,x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 36, normalized size = 1.12 \begin {gather*} \frac {- 15 x \log {\left (x^{2} + 1 \right )} - 6}{\left (2 x^{2} - 6 x\right ) \log {\left (x^{2} + 1 \right )}^{2}} - \frac {225}{16 x - 48} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________