Optimal. Leaf size=29 \[ \frac {e^{\left (2+\frac {1}{3} (-2+x)\right )^2 x}+x}{-5-e^x+\log (3)} \]
________________________________________________________________________________________
Rubi [F] time = 4.38, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-45+e^x (-9+9 x)+9 \log (3)+e^{\frac {1}{9} \left (16 x+8 x^2+x^3\right )} \left (-80-80 x-15 x^2+e^x \left (-7-16 x-3 x^2\right )+\left (16+16 x+3 x^2\right ) \log (3)\right )}{225+9 e^{2 x}+e^x (90-18 \log (3))-90 \log (3)+9 \log ^2(3)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x (-9+9 x)-45 \left (1-\frac {\log (3)}{5}\right )+e^{\frac {1}{9} \left (16 x+8 x^2+x^3\right )} \left (-80-80 x-15 x^2+e^x \left (-7-16 x-3 x^2\right )+\left (16+16 x+3 x^2\right ) \log (3)\right )}{9 \left (e^x+5 \left (1-\frac {\log (3)}{5}\right )\right )^2} \, dx\\ &=\frac {1}{9} \int \frac {e^x (-9+9 x)-45 \left (1-\frac {\log (3)}{5}\right )+e^{\frac {1}{9} \left (16 x+8 x^2+x^3\right )} \left (-80-80 x-15 x^2+e^x \left (-7-16 x-3 x^2\right )+\left (16+16 x+3 x^2\right ) \log (3)\right )}{\left (e^x+5 \left (1-\frac {\log (3)}{5}\right )\right )^2} \, dx\\ &=\frac {1}{9} \int \left (\frac {9 \left (-e^x+e^x x-5 \left (1-\frac {\log (3)}{5}\right )\right )}{\left (e^x+5 \left (1-\frac {\log (3)}{5}\right )\right )^2}+\frac {e^{\frac {1}{9} x (4+x)^2} \left (-7 e^x-16 e^x x-3 e^x x^2-80 \left (1-\frac {\log (3)}{5}\right )-80 x \left (1-\frac {\log (3)}{5}\right )-15 x^2 \left (1-\frac {\log (3)}{5}\right )\right )}{\left (e^x+5 \left (1-\frac {\log (3)}{5}\right )\right )^2}\right ) \, dx\\ &=\frac {1}{9} \int \frac {e^{\frac {1}{9} x (4+x)^2} \left (-7 e^x-16 e^x x-3 e^x x^2-80 \left (1-\frac {\log (3)}{5}\right )-80 x \left (1-\frac {\log (3)}{5}\right )-15 x^2 \left (1-\frac {\log (3)}{5}\right )\right )}{\left (e^x+5 \left (1-\frac {\log (3)}{5}\right )\right )^2} \, dx+\int \frac {-e^x+e^x x-5 \left (1-\frac {\log (3)}{5}\right )}{\left (e^x+5 \left (1-\frac {\log (3)}{5}\right )\right )^2} \, dx\\ &=\frac {1}{9} \int \frac {e^{\frac {1}{9} x (4+x)^2} \left (-e^x \left (7+16 x+3 x^2\right )+\left (16+16 x+3 x^2\right ) (-5+\log (3))\right )}{\left (e^x+5 \left (1-\frac {\log (3)}{5}\right )\right )^2} \, dx+\int \left (\frac {-1+x}{e^x+5 \left (1-\frac {\log (3)}{5}\right )}+\frac {x (-5+\log (3))}{\left (e^x+5 \left (1-\frac {\log (3)}{5}\right )\right )^2}\right ) \, dx\\ &=\frac {1}{9} \int \left (\frac {e^{\frac {1}{9} x (4+x)^2} \left (-7-16 x-3 x^2\right )}{e^x+5 \left (1-\frac {\log (3)}{5}\right )}+\frac {9 e^{\frac {1}{9} x (4+x)^2} (-5+\log (3))}{\left (e^x+5 \left (1-\frac {\log (3)}{5}\right )\right )^2}\right ) \, dx+(-5+\log (3)) \int \frac {x}{\left (e^x+5 \left (1-\frac {\log (3)}{5}\right )\right )^2} \, dx+\int \frac {-1+x}{e^x+5 \left (1-\frac {\log (3)}{5}\right )} \, dx\\ &=\frac {(1-x)^2}{2 (5-\log (3))}+\frac {1}{9} \int \frac {e^{\frac {1}{9} x (4+x)^2} \left (-7-16 x-3 x^2\right )}{e^x+5 \left (1-\frac {\log (3)}{5}\right )} \, dx-\frac {\int \frac {e^x (-1+x)}{e^x+5 \left (1-\frac {\log (3)}{5}\right )} \, dx}{5-\log (3)}+(-5+\log (3)) \int \frac {e^{\frac {1}{9} x (4+x)^2}}{\left (e^x+5 \left (1-\frac {\log (3)}{5}\right )\right )^2} \, dx+\int \frac {e^x x}{\left (e^x+5 \left (1-\frac {\log (3)}{5}\right )\right )^2} \, dx-\int \frac {x}{e^x+5 \left (1-\frac {\log (3)}{5}\right )} \, dx\\ &=\frac {(1-x)^2}{2 (5-\log (3))}-\frac {x^2}{2 (5-\log (3))}-\frac {x}{5+e^x-\log (3)}+\frac {(1-x) \log \left (1+\frac {e^x}{5-\log (3)}\right )}{5-\log (3)}+\frac {1}{9} \int \left (\frac {7 e^{\frac {1}{9} x (4+x)^2}}{-e^x-5 \left (1-\frac {\log (3)}{5}\right )}+\frac {16 e^{\frac {1}{9} x (4+x)^2} x}{-e^x-5 \left (1-\frac {\log (3)}{5}\right )}+\frac {3 e^{\frac {1}{9} x (4+x)^2} x^2}{-e^x-5 \left (1-\frac {\log (3)}{5}\right )}\right ) \, dx+\frac {\int \frac {e^x x}{e^x+5 \left (1-\frac {\log (3)}{5}\right )} \, dx}{5-\log (3)}+\frac {\int \log \left (1+\frac {e^x}{5 \left (1-\frac {\log (3)}{5}\right )}\right ) \, dx}{5-\log (3)}+(-5+\log (3)) \int \frac {e^{\frac {1}{9} x (4+x)^2}}{\left (e^x+5 \left (1-\frac {\log (3)}{5}\right )\right )^2} \, dx+\int \frac {1}{e^x+5 \left (1-\frac {\log (3)}{5}\right )} \, dx\\ &=\frac {(1-x)^2}{2 (5-\log (3))}-\frac {x^2}{2 (5-\log (3))}-\frac {x}{5+e^x-\log (3)}+\frac {(1-x) \log \left (1+\frac {e^x}{5-\log (3)}\right )}{5-\log (3)}+\frac {x \log \left (1+\frac {e^x}{5-\log (3)}\right )}{5-\log (3)}+\frac {1}{3} \int \frac {e^{\frac {1}{9} x (4+x)^2} x^2}{-e^x-5 \left (1-\frac {\log (3)}{5}\right )} \, dx+\frac {7}{9} \int \frac {e^{\frac {1}{9} x (4+x)^2}}{-e^x-5 \left (1-\frac {\log (3)}{5}\right )} \, dx+\frac {16}{9} \int \frac {e^{\frac {1}{9} x (4+x)^2} x}{-e^x-5 \left (1-\frac {\log (3)}{5}\right )} \, dx-\frac {\int \log \left (1+\frac {e^x}{5 \left (1-\frac {\log (3)}{5}\right )}\right ) \, dx}{5-\log (3)}+\frac {\operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{5 \left (1-\frac {\log (3)}{5}\right )}\right )}{x} \, dx,x,e^x\right )}{5-\log (3)}+(-5+\log (3)) \int \frac {e^{\frac {1}{9} x (4+x)^2}}{\left (e^x+5 \left (1-\frac {\log (3)}{5}\right )\right )^2} \, dx+\operatorname {Subst}\left (\int \frac {1}{x (5+x-\log (3))} \, dx,x,e^x\right )\\ &=\frac {(1-x)^2}{2 (5-\log (3))}-\frac {x^2}{2 (5-\log (3))}-\frac {x}{5+e^x-\log (3)}+\frac {(1-x) \log \left (1+\frac {e^x}{5-\log (3)}\right )}{5-\log (3)}+\frac {x \log \left (1+\frac {e^x}{5-\log (3)}\right )}{5-\log (3)}-\frac {\text {Li}_2\left (-\frac {e^x}{5-\log (3)}\right )}{5-\log (3)}+\frac {1}{3} \int \frac {e^{\frac {1}{9} x (4+x)^2} x^2}{-e^x-5 \left (1-\frac {\log (3)}{5}\right )} \, dx+\frac {7}{9} \int \frac {e^{\frac {1}{9} x (4+x)^2}}{-e^x-5 \left (1-\frac {\log (3)}{5}\right )} \, dx+\frac {16}{9} \int \frac {e^{\frac {1}{9} x (4+x)^2} x}{-e^x-5 \left (1-\frac {\log (3)}{5}\right )} \, dx+\frac {\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^x\right )}{5-\log (3)}-\frac {\operatorname {Subst}\left (\int \frac {1}{5+x-\log (3)} \, dx,x,e^x\right )}{5-\log (3)}-\frac {\operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{5 \left (1-\frac {\log (3)}{5}\right )}\right )}{x} \, dx,x,e^x\right )}{5-\log (3)}+(-5+\log (3)) \int \frac {e^{\frac {1}{9} x (4+x)^2}}{\left (e^x+5 \left (1-\frac {\log (3)}{5}\right )\right )^2} \, dx\\ &=\frac {(1-x)^2}{2 (5-\log (3))}+\frac {x}{5-\log (3)}-\frac {x^2}{2 (5-\log (3))}-\frac {x}{5+e^x-\log (3)}+\frac {(1-x) \log \left (1+\frac {e^x}{5-\log (3)}\right )}{5-\log (3)}+\frac {x \log \left (1+\frac {e^x}{5-\log (3)}\right )}{5-\log (3)}-\frac {\log \left (5+e^x-\log (3)\right )}{5-\log (3)}+\frac {1}{3} \int \frac {e^{\frac {1}{9} x (4+x)^2} x^2}{-e^x-5 \left (1-\frac {\log (3)}{5}\right )} \, dx+\frac {7}{9} \int \frac {e^{\frac {1}{9} x (4+x)^2}}{-e^x-5 \left (1-\frac {\log (3)}{5}\right )} \, dx+\frac {16}{9} \int \frac {e^{\frac {1}{9} x (4+x)^2} x}{-e^x-5 \left (1-\frac {\log (3)}{5}\right )} \, dx+(-5+\log (3)) \int \frac {e^{\frac {1}{9} x (4+x)^2}}{\left (e^x+5 \left (1-\frac {\log (3)}{5}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.15, size = 27, normalized size = 0.93 \begin {gather*} -\frac {e^{\frac {1}{9} x (4+x)^2}+x}{5+e^x-\log (3)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 29, normalized size = 1.00 \begin {gather*} -\frac {x + e^{\left (\frac {1}{9} \, x^{3} + \frac {8}{9} \, x^{2} + \frac {16}{9} \, x\right )}}{e^{x} - \log \relax (3) + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 140, normalized size = 4.83 \begin {gather*} -\frac {x \log \relax (3) + e^{\left (\frac {1}{9} \, x^{3} + \frac {8}{9} \, x^{2} + \frac {16}{9} \, x\right )} \log \relax (3) - e^{x} \log \left (e^{x} - \log \relax (3) + 5\right ) + \log \relax (3) \log \left (e^{x} - \log \relax (3) + 5\right ) + e^{x} \log \left (-e^{x} + \log \relax (3) - 5\right ) - \log \relax (3) \log \left (-e^{x} + \log \relax (3) - 5\right ) - 5 \, x - 5 \, e^{\left (\frac {1}{9} \, x^{3} + \frac {8}{9} \, x^{2} + \frac {16}{9} \, x\right )} - 5 \, \log \left (e^{x} - \log \relax (3) + 5\right ) + 5 \, \log \left (-e^{x} + \log \relax (3) - 5\right )}{e^{x} \log \relax (3) - \log \relax (3)^{2} - 5 \, e^{x} + 10 \, \log \relax (3) - 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.26, size = 29, normalized size = 1.00
method | result | size |
norman | \(\frac {x +{\mathrm e}^{\frac {1}{9} x^{3}+\frac {8}{9} x^{2}+\frac {16}{9} x}}{\ln \relax (3)-{\mathrm e}^{x}-5}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.55, size = 205, normalized size = 7.07 \begin {gather*} {\left (\frac {x}{\log \relax (3)^{2} - 10 \, \log \relax (3) + 25} - \frac {\log \left (e^{x} - \log \relax (3) + 5\right )}{\log \relax (3)^{2} - 10 \, \log \relax (3) + 25} - \frac {1}{{\left (\log \relax (3) - 5\right )} e^{x} - \log \relax (3)^{2} + 10 \, \log \relax (3) - 25}\right )} \log \relax (3) - \frac {x e^{x}}{{\left (\log \relax (3) - 5\right )} e^{x} - \log \relax (3)^{2} + 10 \, \log \relax (3) - 25} - \frac {5 \, x}{\log \relax (3)^{2} - 10 \, \log \relax (3) + 25} - \frac {e^{\left (\frac {1}{9} \, x^{3} + \frac {8}{9} \, x^{2} + \frac {16}{9} \, x\right )}}{e^{x} - \log \relax (3) + 5} + \frac {5 \, \log \left (e^{x} - \log \relax (3) + 5\right )}{\log \relax (3)^{2} - 10 \, \log \relax (3) + 25} + \frac {\log \left (e^{x} - \log \relax (3) + 5\right )}{\log \relax (3) - 5} + \frac {5}{{\left (\log \relax (3) - 5\right )} e^{x} - \log \relax (3)^{2} + 10 \, \log \relax (3) - 25} + \frac {1}{e^{x} - \log \relax (3) + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.63, size = 225, normalized size = 7.76 \begin {gather*} \frac {5\,\ln \left ({\mathrm {e}}^x-\ln \relax (3)+5\right )}{{\ln \relax (3)}^2-10\,\ln \relax (3)+25}+\frac {\frac {{\mathrm {e}}^x}{\ln \relax (3)-5}-\frac {x\,{\mathrm {e}}^x}{\ln \relax (3)-5}}{{\mathrm {e}}^x-\ln \relax (3)+5}+\frac {\frac {5\,x}{\ln \relax (3)-5}+\frac {5\,{\mathrm {e}}^x}{{\left (\ln \relax (3)-5\right )}^2}-\frac {5\,x\,{\mathrm {e}}^x}{{\ln \relax (3)}^2-10\,\ln \relax (3)+25}}{{\mathrm {e}}^x-\ln \relax (3)+5}-\frac {{\mathrm {e}}^{\frac {x^3}{9}+\frac {8\,x^2}{9}+\frac {16\,x}{9}}}{{\mathrm {e}}^x-\ln \relax (3)+5}-\frac {\frac {x\,\ln \relax (3)}{\ln \relax (3)-5}+\frac {{\mathrm {e}}^x\,\ln \relax (3)}{{\left (\ln \relax (3)-5\right )}^2}-\frac {x\,{\mathrm {e}}^x\,\ln \relax (3)}{{\ln \relax (3)}^2-10\,\ln \relax (3)+25}}{{\mathrm {e}}^x-\ln \relax (3)+5}+\frac {\ln \left ({\mathrm {e}}^x-\ln \relax (3)+5\right )}{\ln \relax (3)-5}-\frac {\ln \relax (3)\,\ln \left ({\mathrm {e}}^x-\ln \relax (3)+5\right )}{{\ln \relax (3)}^2-10\,\ln \relax (3)+25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 37, normalized size = 1.28 \begin {gather*} - \frac {x}{e^{x} - \log {\relax (3 )} + 5} - \frac {e^{\frac {x^{3}}{9} + \frac {8 x^{2}}{9} + \frac {16 x}{9}}}{e^{x} - \log {\relax (3 )} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________