Optimal. Leaf size=22 \[ \frac {\left (400+e^x\right ) (-2+x)}{6 e^5}+\frac {\log (x)}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 38, normalized size of antiderivative = 1.73, number of steps used = 10, number of rules used = 5, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.122, Rules used = {12, 14, 2176, 2194, 2304} \begin {gather*} -\frac {1}{6} e^{x-5} (1-x)-\frac {e^{x-5}}{6}+\frac {200 x}{3 e^5}+\frac {\log (x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2176
Rule 2194
Rule 2304
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {6 e^5+400 x^2+e^x \left (-x^2+x^3\right )-6 e^5 \log (x)}{x^2} \, dx}{6 e^5}\\ &=\frac {\int \left (e^x (-1+x)-\frac {2 \left (-3 e^5-200 x^2+3 e^5 \log (x)\right )}{x^2}\right ) \, dx}{6 e^5}\\ &=\frac {\int e^x (-1+x) \, dx}{6 e^5}-\frac {\int \frac {-3 e^5-200 x^2+3 e^5 \log (x)}{x^2} \, dx}{3 e^5}\\ &=-\frac {1}{6} e^{-5+x} (1-x)-\frac {\int e^x \, dx}{6 e^5}-\frac {\int \left (\frac {-3 e^5-200 x^2}{x^2}+\frac {3 e^5 \log (x)}{x^2}\right ) \, dx}{3 e^5}\\ &=-\frac {1}{6} e^{-5+x}-\frac {1}{6} e^{-5+x} (1-x)-\frac {\int \frac {-3 e^5-200 x^2}{x^2} \, dx}{3 e^5}-\int \frac {\log (x)}{x^2} \, dx\\ &=-\frac {1}{6} e^{-5+x}-\frac {1}{6} e^{-5+x} (1-x)+\frac {1}{x}+\frac {\log (x)}{x}-\frac {\int \left (-200-\frac {3 e^5}{x^2}\right ) \, dx}{3 e^5}\\ &=-\frac {1}{6} e^{-5+x}-\frac {1}{6} e^{-5+x} (1-x)+\frac {200 x}{3 e^5}+\frac {\log (x)}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 33, normalized size = 1.50 \begin {gather*} \frac {200 x}{3 e^5}+\frac {1}{6} e^x \left (-\frac {2}{e^5}+\frac {x}{e^5}\right )+\frac {\log (x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 29, normalized size = 1.32 \begin {gather*} \frac {{\left (400 \, x^{2} + {\left (x^{2} - 2 \, x\right )} e^{x} + 6 \, e^{5} \log \relax (x)\right )} e^{\left (-5\right )}}{6 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.43, size = 30, normalized size = 1.36 \begin {gather*} \frac {{\left (x^{2} e^{x} + 400 \, x^{2} - 2 \, x e^{x} + 6 \, e^{5} \log \relax (x)\right )} e^{\left (-5\right )}}{6 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 26, normalized size = 1.18
method | result | size |
risch | \(\frac {x \,{\mathrm e}^{x -5}}{6}-\frac {{\mathrm e}^{x -5}}{3}+\frac {200 x \,{\mathrm e}^{-5}}{3}+\frac {\ln \relax (x )}{x}\) | \(26\) |
default | \(\frac {{\mathrm e}^{-5} \left ({\mathrm e}^{x} x -2 \,{\mathrm e}^{x}+400 x +\frac {6 \,{\mathrm e}^{5} \ln \relax (x )}{x}\right )}{6}\) | \(28\) |
norman | \(\frac {\frac {200 \,{\mathrm e}^{-5} x^{2}}{3}-\frac {x \,{\mathrm e}^{-5} {\mathrm e}^{x}}{3}+\frac {x^{2} {\mathrm e}^{-5} {\mathrm e}^{x}}{6}+\ln \relax (x )}{x}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.61, size = 39, normalized size = 1.77 \begin {gather*} \frac {1}{6} \, {\left (6 \, {\left (\frac {\log \relax (x)}{x} + \frac {1}{x}\right )} e^{5} + {\left (x - 1\right )} e^{x} + 400 \, x - \frac {6 \, e^{5}}{x} - e^{x}\right )} e^{\left (-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.69, size = 25, normalized size = 1.14 \begin {gather*} \frac {\ln \relax (x)}{x}+\frac {200\,x\,{\mathrm {e}}^{-5}}{3}-\frac {{\mathrm {e}}^{-5}\,{\mathrm {e}}^x}{3}+\frac {x\,{\mathrm {e}}^{-5}\,{\mathrm {e}}^x}{6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 24, normalized size = 1.09 \begin {gather*} \frac {200 x}{3 e^{5}} + \frac {\left (x - 2\right ) e^{x}}{6 e^{5}} + \frac {\log {\relax (x )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________