Optimal. Leaf size=26 \[ -5+e^x+x+e^{-e^{\frac {1}{3} x (5+x)}} x^2+\log (x) \]
________________________________________________________________________________________
Rubi [F] time = 4.10, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-e^{\frac {1}{3} \left (5 x+x^2\right )}} \left (6 x^2+e^{e^{\frac {1}{3} \left (5 x+x^2\right )}} \left (3+3 x+3 e^x x\right )+e^{\frac {1}{3} \left (5 x+x^2\right )} \left (-5 x^3-2 x^4\right )\right )}{3 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {e^{-e^{\frac {1}{3} \left (5 x+x^2\right )}} \left (6 x^2+e^{e^{\frac {1}{3} \left (5 x+x^2\right )}} \left (3+3 x+3 e^x x\right )+e^{\frac {1}{3} \left (5 x+x^2\right )} \left (-5 x^3-2 x^4\right )\right )}{x} \, dx\\ &=\frac {1}{3} \int \frac {e^{-e^{\frac {1}{3} x (5+x)}} \left (6 x^2+e^{e^{\frac {1}{3} \left (5 x+x^2\right )}} \left (3+3 x+3 e^x x\right )+e^{\frac {1}{3} \left (5 x+x^2\right )} \left (-5 x^3-2 x^4\right )\right )}{x} \, dx\\ &=\frac {1}{3} \int \left (-e^{-e^{\frac {1}{3} x (5+x)}+\frac {1}{3} x (5+x)} x^2 (5+2 x)+\frac {3 e^{-e^{\frac {1}{3} x (5+x)}} \left (e^{e^{\frac {1}{3} x (5+x)}}+e^{e^{\frac {1}{3} x (5+x)}} x+e^{e^{\frac {1}{3} x (5+x)}+x} x+2 x^2\right )}{x}\right ) \, dx\\ &=-\left (\frac {1}{3} \int e^{-e^{\frac {1}{3} x (5+x)}+\frac {1}{3} x (5+x)} x^2 (5+2 x) \, dx\right )+\int \frac {e^{-e^{\frac {1}{3} x (5+x)}} \left (e^{e^{\frac {1}{3} x (5+x)}}+e^{e^{\frac {1}{3} x (5+x)}} x+e^{e^{\frac {1}{3} x (5+x)}+x} x+2 x^2\right )}{x} \, dx\\ &=-\left (\frac {1}{3} \int e^{\frac {1}{3} \left (-3 e^{\frac {1}{3} x (5+x)}+5 x+x^2\right )} x^2 (5+2 x) \, dx\right )+\int \left (1+e^x+\frac {1}{x}+2 e^{-e^{\frac {1}{3} x (5+x)}} x\right ) \, dx\\ &=x+\log (x)-\frac {1}{3} \int \left (5 e^{\frac {1}{3} \left (-3 e^{\frac {1}{3} x (5+x)}+5 x+x^2\right )} x^2+2 e^{\frac {1}{3} \left (-3 e^{\frac {1}{3} x (5+x)}+5 x+x^2\right )} x^3\right ) \, dx+2 \int e^{-e^{\frac {1}{3} x (5+x)}} x \, dx+\int e^x \, dx\\ &=e^x+x+\log (x)-\frac {2}{3} \int e^{\frac {1}{3} \left (-3 e^{\frac {1}{3} x (5+x)}+5 x+x^2\right )} x^3 \, dx-\frac {5}{3} \int e^{\frac {1}{3} \left (-3 e^{\frac {1}{3} x (5+x)}+5 x+x^2\right )} x^2 \, dx+2 \int e^{-e^{\frac {1}{3} x (5+x)}} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 25, normalized size = 0.96 \begin {gather*} e^x+x+e^{-e^{\frac {1}{3} x (5+x)}} x^2+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 36, normalized size = 1.38 \begin {gather*} {\left (x^{2} + {\left (x + e^{x} + \log \relax (x)\right )} e^{\left (e^{\left (\frac {1}{3} \, x^{2} + \frac {5}{3} \, x\right )}\right )}\right )} e^{\left (-e^{\left (\frac {1}{3} \, x^{2} + \frac {5}{3} \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.70, size = 73, normalized size = 2.81 \begin {gather*} {\left (x^{2} e^{\left (\frac {1}{3} \, x^{2} + \frac {5}{3} \, x - e^{\left (\frac {1}{3} \, x^{2} + \frac {5}{3} \, x\right )}\right )} + x e^{\left (\frac {1}{3} \, x^{2} + \frac {5}{3} \, x\right )} + e^{\left (\frac {1}{3} \, x^{2} + \frac {5}{3} \, x\right )} \log \relax (x) + e^{\left (\frac {1}{3} \, x^{2} + \frac {8}{3} \, x\right )}\right )} e^{\left (-\frac {1}{3} \, x^{2} - \frac {5}{3} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 21, normalized size = 0.81
method | result | size |
risch | \(x +\ln \relax (x )+{\mathrm e}^{x}+x^{2} {\mathrm e}^{-{\mathrm e}^{\frac {\left (5+x \right ) x}{3}}}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.65, size = 23, normalized size = 0.88 \begin {gather*} x^{2} e^{\left (-e^{\left (\frac {1}{3} \, x^{2} + \frac {5}{3} \, x\right )}\right )} + x + e^{x} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.17, size = 23, normalized size = 0.88 \begin {gather*} x+{\mathrm {e}}^x+\ln \relax (x)+x^2\,{\mathrm {e}}^{-{\left ({\mathrm {e}}^{x^2}\right )}^{1/3}\,{\left ({\mathrm {e}}^x\right )}^{5/3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 76.10, size = 24, normalized size = 0.92 \begin {gather*} x^{2} e^{- e^{\frac {x^{2}}{3} + \frac {5 x}{3}}} + x + e^{x} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________