Optimal. Leaf size=23 \[ 3 \left (e^2+e^4\right )^2 \left (-2+\frac {1}{2} (-2+x)+2 x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 15, normalized size of antiderivative = 0.65, number of steps used = 1, number of rules used = 1, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.050, Rules used = {8} \begin {gather*} \frac {15}{2} e^4 \left (1+e^2\right )^2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {15}{2} e^4 \left (1+e^2\right )^2 x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 23, normalized size = 1.00 \begin {gather*} \frac {15 e^4 x}{2}+15 e^6 x+\frac {15 e^8 x}{2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 16, normalized size = 0.70 \begin {gather*} \frac {15}{2} \, x e^{8} + 15 \, x e^{6} + \frac {15}{2} \, x e^{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 12, normalized size = 0.52 \begin {gather*} \frac {15}{2} \, x {\left (e^{8} + 2 \, e^{6} + e^{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 17, normalized size = 0.74
method | result | size |
risch | \(\frac {15 x \,{\mathrm e}^{8}}{2}+15 x \,{\mathrm e}^{6}+\frac {15 x \,{\mathrm e}^{4}}{2}\) | \(17\) |
default | \(\left (\frac {15 \,{\mathrm e}^{8}}{2}+15 \,{\mathrm e}^{2} {\mathrm e}^{4}+\frac {15 \,{\mathrm e}^{4}}{2}\right ) x\) | \(22\) |
norman | \(\left (\frac {15 \,{\mathrm e}^{8}}{2}+15 \,{\mathrm e}^{2} {\mathrm e}^{4}+\frac {15 \,{\mathrm e}^{4}}{2}\right ) x\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 12, normalized size = 0.52 \begin {gather*} \frac {15}{2} \, x {\left (e^{8} + 2 \, e^{6} + e^{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.00, size = 15, normalized size = 0.65 \begin {gather*} x\,\left (\frac {15\,{\mathrm {e}}^4}{2}+15\,{\mathrm {e}}^6+\frac {15\,{\mathrm {e}}^8}{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.05, size = 19, normalized size = 0.83 \begin {gather*} x \left (\frac {15 e^{4}}{2} + 15 e^{6} + \frac {15 e^{8}}{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________