Optimal. Leaf size=27 \[ \left (-2 e^2+e^{e^5+\frac {1}{3} \left (-1+3 \left (-1+x^3\right )\right )}\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.14, antiderivative size = 39, normalized size of antiderivative = 1.44, number of steps used = 5, number of rules used = 2, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.041, Rules used = {2225, 2209} \begin {gather*} e^{2 x^3-\frac {2}{3} \left (4-3 e^5\right )}-4 e^{x^3+\frac {1}{3} \left (2+3 e^5\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2209
Rule 2225
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=6 \int e^{\frac {2}{3} \left (-4+3 e^5+3 x^3\right )} x^2 \, dx-12 \int e^{2+\frac {1}{3} \left (-4+3 e^5+3 x^3\right )} x^2 \, dx\\ &=6 \int e^{-\frac {2}{3} \left (4-3 e^5\right )+2 x^3} x^2 \, dx-12 \int e^{\frac {1}{3} \left (2+3 e^5\right )+x^3} x^2 \, dx\\ &=-4 e^{\frac {1}{3} \left (2+3 e^5\right )+x^3}+e^{-\frac {2}{3} \left (4-3 e^5\right )+2 x^3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 25, normalized size = 0.93 \begin {gather*} \frac {\left (-2 e^{10/3}+e^{e^5+x^3}\right )^2}{e^{8/3}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 26, normalized size = 0.96 \begin {gather*} {\left (e^{\left (2 \, x^{3} + 2 \, e^{5} + \frac {4}{3}\right )} - 4 \, e^{\left (x^{3} + e^{5} + \frac {14}{3}\right )}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 23, normalized size = 0.85 \begin {gather*} e^{\left (2 \, x^{3} + 2 \, e^{5} - \frac {8}{3}\right )} - 4 \, e^{\left (x^{3} + e^{5} + \frac {2}{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 24, normalized size = 0.89
method | result | size |
default | \({\mathrm e}^{2 \,{\mathrm e}^{5}+2 x^{3}-\frac {8}{3}}-4 \,{\mathrm e}^{2} {\mathrm e}^{{\mathrm e}^{5}+x^{3}-\frac {4}{3}}\) | \(24\) |
norman | \({\mathrm e}^{2 \,{\mathrm e}^{5}+2 x^{3}-\frac {8}{3}}-4 \,{\mathrm e}^{2} {\mathrm e}^{{\mathrm e}^{5}+x^{3}-\frac {4}{3}}\) | \(24\) |
risch | \({\mathrm e}^{2 \,{\mathrm e}^{5}+2 x^{3}-\frac {8}{3}}-4 \,{\mathrm e}^{\frac {2}{3}+{\mathrm e}^{5}+x^{3}}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 23, normalized size = 0.85 \begin {gather*} e^{\left (2 \, x^{3} + 2 \, e^{5} - \frac {8}{3}\right )} - 4 \, e^{\left (x^{3} + e^{5} + \frac {2}{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 25, normalized size = 0.93 \begin {gather*} -{\mathrm {e}}^{x^3}\,{\mathrm {e}}^{-\frac {8}{3}}\,{\mathrm {e}}^{{\mathrm {e}}^5}\,\left (4\,{\mathrm {e}}^{10/3}-{\mathrm {e}}^{x^3}\,{\mathrm {e}}^{{\mathrm {e}}^5}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 31, normalized size = 1.15 \begin {gather*} - 4 e^{2} e^{x^{3} - \frac {4}{3} + e^{5}} + e^{2 x^{3} - \frac {8}{3} + 2 e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________