Optimal. Leaf size=31 \[ 2 e^{-x+\frac {x+\log \left (e^x \left (4+\log \left (x^2\right )\right )\right )}{-\frac {4}{x^2}+x}} \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [B] time = 0.37, size = 64, normalized size = 2.06 \begin {gather*} 2 e^{\frac {x \left (4+x^2-x^3-x \log \left (4+\log \left (x^2\right )\right )+x \log \left (e^x \left (4+\log \left (x^2\right )\right )\right )\right )}{-4+x^3}} \left (4+\log \left (x^2\right )\right )^{\frac {x^2}{-4+x^3}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 42, normalized size = 1.35 \begin {gather*} 2 \, e^{\left (-\frac {x^{4} - x^{3} - x^{2} \log \left (e^{x} \log \left (x^{2}\right ) + 4 \, e^{x}\right ) - 4 \, x}{x^{3} - 4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.93, size = 61, normalized size = 1.97 \begin {gather*} 2 \, e^{\left (-\frac {x^{4}}{x^{3} - 4} + \frac {x^{3}}{x^{3} - 4} + \frac {x^{2} \log \left (e^{x} \log \left (x^{2}\right ) + 4 \, e^{x}\right )}{x^{3} - 4} + \frac {4 \, x}{x^{3} - 4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.53, size = 545, normalized size = 17.58
method | result | size |
risch | \(2 \,{\mathrm e}^{-\frac {x \left (-i x \pi \mathrm {csgn}\left (i {\mathrm e}^{x} \left (8 i+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}\right )\right )^{3}-i x \pi \mathrm {csgn}\left (i {\mathrm e}^{x} \left (8 i+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}\right )\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{x}\right )-i x \pi \mathrm {csgn}\left (i {\mathrm e}^{x} \left (8 i+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}\right )\right )^{2} \mathrm {csgn}\left (i \left (8 i+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}\right )\right )+i x \pi \,\mathrm {csgn}\left (i {\mathrm e}^{x} \left (8 i+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i \left (8 i+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}\right )\right )+2 i x \pi \mathrm {csgn}\left (i {\mathrm e}^{x} \left (8 i+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}\right )\right )^{2}-2 i \pi x +2 x^{3}+2 x \ln \relax (2)-2 x \ln \left ({\mathrm e}^{x}\right )-2 x \ln \left (8 i+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}\right )-2 x^{2}-8\right )}{2 \left (x^{3}-4\right )}}\) | \(545\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 46, normalized size = 1.48 \begin {gather*} 2 \, e^{\left (\frac {x^{2} \log \relax (2)}{x^{3} - 4} + \frac {x^{2} \log \left (\log \relax (x) + 2\right )}{x^{3} - 4} - x + \frac {8}{x^{3} - 4} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.67, size = 62, normalized size = 2.00 \begin {gather*} 2\,{\mathrm {e}}^{\frac {x^3}{x^3-4}}\,{\mathrm {e}}^{-\frac {x^4}{x^3-4}}\,{\mathrm {e}}^{\frac {4\,x}{x^3-4}}\,{\left (4\,{\mathrm {e}}^x+\ln \left (x^2\right )\,{\mathrm {e}}^x\right )}^{\frac {x^2}{x^3-4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________