Optimal. Leaf size=23 \[ \frac {\left (3+(x \log (3)+\log (4))^2-\log ^2(x)\right )^2}{x^4} \]
________________________________________________________________________________________
Rubi [B] time = 0.44, antiderivative size = 153, normalized size of antiderivative = 6.65, number of steps used = 24, number of rules used = 4, integrand size = 132, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.030, Rules used = {14, 2357, 2304, 2305} \begin {gather*} \frac {\log ^4(x)}{x^4}-\frac {2 \left (3+\log ^2(4)\right ) \log ^2(x)}{x^4}+\frac {\left (3+\log ^2(4)\right )^2}{x^4}-\frac {4 \log (4) \log (27) \log ^2(x)}{3 x^3}+\frac {4 \log (3) \log (4) \left (3+\log ^2(4)\right )}{x^3}-\frac {8 \log (4) \log (27) \log (x)}{9 x^3}+\frac {4 \log (4) \log (9) \log (x)}{3 x^3}-\frac {8 \log (4) \log (27)}{27 x^3}+\frac {4 \log (4) \log (9)}{9 x^3}-\frac {2 \log ^2(3) \log ^2(x)}{x^2}+\frac {6 \log ^2(3) \left (1+\log ^2(4)\right )}{x^2}+\frac {4 \log ^3(3) \log (4)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2304
Rule 2305
Rule 2357
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {4 \left (-x^3 \log ^3(3) \log (4)-3 x^2 \log ^2(3) \left (1+\log ^2(4)\right )-3 x \log (3) \log (4) \left (3+\log ^2(4)\right )-\left (3+\log ^2(4)\right )^2\right )}{x^5}-\frac {4 \left (3+x^2 \log ^2(3)+\log ^2(4)+x \log (4) \log (9)\right ) \log (x)}{x^5}+\frac {4 \left (x^2 \log ^2(3)+2 \left (3+\log ^2(4)\right )+x \log (4) \log (27)\right ) \log ^2(x)}{x^5}+\frac {4 \log ^3(x)}{x^5}-\frac {4 \log ^4(x)}{x^5}\right ) \, dx\\ &=4 \int \frac {-x^3 \log ^3(3) \log (4)-3 x^2 \log ^2(3) \left (1+\log ^2(4)\right )-3 x \log (3) \log (4) \left (3+\log ^2(4)\right )-\left (3+\log ^2(4)\right )^2}{x^5} \, dx-4 \int \frac {\left (3+x^2 \log ^2(3)+\log ^2(4)+x \log (4) \log (9)\right ) \log (x)}{x^5} \, dx+4 \int \frac {\left (x^2 \log ^2(3)+2 \left (3+\log ^2(4)\right )+x \log (4) \log (27)\right ) \log ^2(x)}{x^5} \, dx+4 \int \frac {\log ^3(x)}{x^5} \, dx-4 \int \frac {\log ^4(x)}{x^5} \, dx\\ &=-\frac {\log ^3(x)}{x^4}+\frac {\log ^4(x)}{x^4}+3 \int \frac {\log ^2(x)}{x^5} \, dx+4 \int \left (-\frac {\log ^3(3) \log (4)}{x^2}-\frac {3 \log ^2(3) \left (1+\log ^2(4)\right )}{x^3}-\frac {3 \log (3) \log (4) \left (3+\log ^2(4)\right )}{x^4}-\frac {\left (3+\log ^2(4)\right )^2}{x^5}\right ) \, dx-4 \int \frac {\log ^3(x)}{x^5} \, dx-4 \int \left (\frac {\log ^2(3) \log (x)}{x^3}+\frac {\left (3+\log ^2(4)\right ) \log (x)}{x^5}+\frac {\log (4) \log (9) \log (x)}{x^4}\right ) \, dx+4 \int \left (\frac {\log ^2(3) \log ^2(x)}{x^3}+\frac {2 \left (3+\log ^2(4)\right ) \log ^2(x)}{x^5}+\frac {\log (4) \log (27) \log ^2(x)}{x^4}\right ) \, dx\\ &=\frac {4 \log ^3(3) \log (4)}{x}+\frac {6 \log ^2(3) \left (1+\log ^2(4)\right )}{x^2}+\frac {4 \log (3) \log (4) \left (3+\log ^2(4)\right )}{x^3}+\frac {\left (3+\log ^2(4)\right )^2}{x^4}-\frac {3 \log ^2(x)}{4 x^4}+\frac {\log ^4(x)}{x^4}+\frac {3}{2} \int \frac {\log (x)}{x^5} \, dx-3 \int \frac {\log ^2(x)}{x^5} \, dx-\left (4 \log ^2(3)\right ) \int \frac {\log (x)}{x^3} \, dx+\left (4 \log ^2(3)\right ) \int \frac {\log ^2(x)}{x^3} \, dx-\left (4 \left (3+\log ^2(4)\right )\right ) \int \frac {\log (x)}{x^5} \, dx+\left (8 \left (3+\log ^2(4)\right )\right ) \int \frac {\log ^2(x)}{x^5} \, dx-(4 \log (4) \log (9)) \int \frac {\log (x)}{x^4} \, dx+(4 \log (4) \log (27)) \int \frac {\log ^2(x)}{x^4} \, dx\\ &=-\frac {3}{32 x^4}+\frac {\log ^2(3)}{x^2}+\frac {4 \log ^3(3) \log (4)}{x}+\frac {6 \log ^2(3) \left (1+\log ^2(4)\right )}{x^2}+\frac {3+\log ^2(4)}{4 x^4}+\frac {4 \log (3) \log (4) \left (3+\log ^2(4)\right )}{x^3}+\frac {\left (3+\log ^2(4)\right )^2}{x^4}+\frac {4 \log (4) \log (9)}{9 x^3}-\frac {3 \log (x)}{8 x^4}+\frac {2 \log ^2(3) \log (x)}{x^2}+\frac {\left (3+\log ^2(4)\right ) \log (x)}{x^4}+\frac {4 \log (4) \log (9) \log (x)}{3 x^3}-\frac {2 \log ^2(3) \log ^2(x)}{x^2}-\frac {2 \left (3+\log ^2(4)\right ) \log ^2(x)}{x^4}-\frac {4 \log (4) \log (27) \log ^2(x)}{3 x^3}+\frac {\log ^4(x)}{x^4}-\frac {3}{2} \int \frac {\log (x)}{x^5} \, dx+\left (4 \log ^2(3)\right ) \int \frac {\log (x)}{x^3} \, dx+\left (4 \left (3+\log ^2(4)\right )\right ) \int \frac {\log (x)}{x^5} \, dx+\frac {1}{3} (8 \log (4) \log (27)) \int \frac {\log (x)}{x^4} \, dx\\ &=\frac {4 \log ^3(3) \log (4)}{x}+\frac {6 \log ^2(3) \left (1+\log ^2(4)\right )}{x^2}+\frac {4 \log (3) \log (4) \left (3+\log ^2(4)\right )}{x^3}+\frac {\left (3+\log ^2(4)\right )^2}{x^4}+\frac {4 \log (4) \log (9)}{9 x^3}-\frac {8 \log (4) \log (27)}{27 x^3}+\frac {4 \log (4) \log (9) \log (x)}{3 x^3}-\frac {8 \log (4) \log (27) \log (x)}{9 x^3}-\frac {2 \log ^2(3) \log ^2(x)}{x^2}-\frac {2 \left (3+\log ^2(4)\right ) \log ^2(x)}{x^4}-\frac {4 \log (4) \log (27) \log ^2(x)}{3 x^3}+\frac {\log ^4(x)}{x^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.05, size = 184, normalized size = 8.00 \begin {gather*} \frac {9}{x^4}+\frac {6 \log ^2(3)}{x^2}+\frac {12 \log (3) \log (4)}{x^3}+\frac {4 \log ^3(3) \log (4)}{x}+\frac {6 \log ^2(4)}{x^4}+\frac {6 \log ^2(3) \log ^2(4)}{x^2}+\frac {\log ^4(4)}{x^4}+\frac {4 \log (4) \log (9)}{9 x^3}-\frac {8 \log (4) \log (27)}{27 x^3}+\frac {4 \log ^3(4) \log (27)}{3 x^3}+\frac {4 \log (4) \log (9) \log (x)}{3 x^3}-\frac {8 \log (4) \log (27) \log (x)}{9 x^3}-\frac {6 \log ^2(x)}{x^4}-\frac {2 \log ^2(3) \log ^2(x)}{x^2}-\frac {2 \log ^2(4) \log ^2(x)}{x^4}-\frac {4 \log (4) \log (27) \log ^2(x)}{3 x^3}+\frac {\log ^4(x)}{x^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.05, size = 98, normalized size = 4.26 \begin {gather*} \frac {8 \, x^{3} \log \relax (3)^{3} \log \relax (2) + 16 \, \log \relax (2)^{4} + \log \relax (x)^{4} + 6 \, {\left (4 \, x^{2} \log \relax (2)^{2} + x^{2}\right )} \log \relax (3)^{2} - 2 \, {\left (x^{2} \log \relax (3)^{2} + 4 \, x \log \relax (3) \log \relax (2) + 4 \, \log \relax (2)^{2} + 3\right )} \log \relax (x)^{2} + 8 \, {\left (4 \, x \log \relax (2)^{3} + 3 \, x \log \relax (2)\right )} \log \relax (3) + 24 \, \log \relax (2)^{2} + 9}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 108, normalized size = 4.70 \begin {gather*} \frac {\log \relax (x)^{4}}{x^{4}} - \frac {2 \, {\left (x^{2} \log \relax (3)^{2} + 4 \, x \log \relax (3) \log \relax (2) + 4 \, \log \relax (2)^{2} + 3\right )} \log \relax (x)^{2}}{x^{4}} + \frac {8 \, x^{3} \log \relax (3)^{3} \log \relax (2) + 24 \, x^{2} \log \relax (3)^{2} \log \relax (2)^{2} + 32 \, x \log \relax (3) \log \relax (2)^{3} + 6 \, x^{2} \log \relax (3)^{2} + 16 \, \log \relax (2)^{4} + 24 \, x \log \relax (3) \log \relax (2) + 24 \, \log \relax (2)^{2} + 9}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.03, size = 109, normalized size = 4.74
method | result | size |
risch | \(\frac {\ln \relax (x )^{4}}{x^{4}}-\frac {2 \left (x^{2} \ln \relax (3)^{2}+4 x \ln \relax (2) \ln \relax (3)+4 \ln \relax (2)^{2}+3\right ) \ln \relax (x )^{2}}{x^{4}}+\frac {8 \ln \relax (3)^{3} \ln \relax (2) x^{3}+24 x^{2} \ln \relax (3)^{2} \ln \relax (2)^{2}+32 x \ln \relax (3) \ln \relax (2)^{3}+6 x^{2} \ln \relax (3)^{2}+16 \ln \relax (2)^{4}+24 x \ln \relax (2) \ln \relax (3)+24 \ln \relax (2)^{2}+9}{x^{4}}\) | \(109\) |
default | \(\frac {24 \ln \relax (2)^{2}}{x^{4}}+\frac {9}{x^{4}}+\frac {6 \ln \relax (3)^{2}}{x^{2}}+\frac {24 \ln \relax (2) \ln \relax (3)}{x^{3}}+24 \ln \relax (2) \ln \relax (3) \left (-\frac {\ln \relax (x )^{2}}{3 x^{3}}-\frac {2 \ln \relax (x )}{9 x^{3}}-\frac {2}{27 x^{3}}\right )+32 \ln \relax (2)^{2} \left (-\frac {\ln \relax (x )^{2}}{4 x^{4}}-\frac {\ln \relax (x )}{8 x^{4}}-\frac {1}{32 x^{4}}\right )+\frac {16 \ln \relax (2)^{4}}{x^{4}}-16 \ln \relax (2)^{2} \left (-\frac {\ln \relax (x )}{4 x^{4}}-\frac {1}{16 x^{4}}\right )+\frac {32 \ln \relax (2)^{3} \ln \relax (3)}{x^{3}}+\frac {8 \ln \relax (2) \ln \relax (3)^{3}}{x}+\frac {24 \ln \relax (3)^{2} \ln \relax (2)^{2}}{x^{2}}+4 \ln \relax (3)^{2} \left (-\frac {\ln \relax (x )^{2}}{2 x^{2}}-\frac {\ln \relax (x )}{2 x^{2}}-\frac {1}{4 x^{2}}\right )-4 \ln \relax (3)^{2} \left (-\frac {\ln \relax (x )}{2 x^{2}}-\frac {1}{4 x^{2}}\right )+\frac {\ln \relax (x )^{4}}{x^{4}}-\frac {6 \ln \relax (x )^{2}}{x^{4}}-16 \ln \relax (2) \ln \relax (3) \left (-\frac {\ln \relax (x )}{3 x^{3}}-\frac {1}{9 x^{3}}\right )\) | \(236\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 265, normalized size = 11.52 \begin {gather*} {\left (\frac {2 \, \log \relax (x)}{x^{2}} + \frac {1}{x^{2}}\right )} \log \relax (3)^{2} + \frac {16}{9} \, {\left (\frac {3 \, \log \relax (x)}{x^{3}} + \frac {1}{x^{3}}\right )} \log \relax (3) \log \relax (2) + \frac {8 \, \log \relax (3)^{3} \log \relax (2)}{x} + {\left (\frac {4 \, \log \relax (x)}{x^{4}} + \frac {1}{x^{4}}\right )} \log \relax (2)^{2} + \frac {24 \, \log \relax (3)^{2} \log \relax (2)^{2}}{x^{2}} - \frac {{\left (2 \, \log \relax (x)^{2} + 2 \, \log \relax (x) + 1\right )} \log \relax (3)^{2}}{x^{2}} + \frac {32 \, \log \relax (3) \log \relax (2)^{3}}{x^{3}} + \frac {6 \, \log \relax (3)^{2}}{x^{2}} - \frac {8 \, {\left (9 \, \log \relax (x)^{2} + 6 \, \log \relax (x) + 2\right )} \log \relax (3) \log \relax (2)}{9 \, x^{3}} + \frac {16 \, \log \relax (2)^{4}}{x^{4}} + \frac {24 \, \log \relax (3) \log \relax (2)}{x^{3}} - \frac {{\left (8 \, \log \relax (x)^{2} + 4 \, \log \relax (x) + 1\right )} \log \relax (2)^{2}}{x^{4}} + \frac {24 \, \log \relax (2)^{2}}{x^{4}} + \frac {32 \, \log \relax (x)^{4} + 32 \, \log \relax (x)^{3} + 24 \, \log \relax (x)^{2} + 12 \, \log \relax (x) + 3}{32 \, x^{4}} - \frac {32 \, \log \relax (x)^{3} + 24 \, \log \relax (x)^{2} + 12 \, \log \relax (x) + 3}{32 \, x^{4}} - \frac {3 \, {\left (8 \, \log \relax (x)^{2} + 4 \, \log \relax (x) + 1\right )}}{4 \, x^{4}} + \frac {3 \, \log \relax (x)}{x^{4}} + \frac {39}{4 \, x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.59, size = 107, normalized size = 4.65 \begin {gather*} \frac {x\,\left ({\ln \relax (x)}^4+\left (-8\,{\ln \relax (2)}^2-6\right )\,{\ln \relax (x)}^2+{\left (4\,{\ln \relax (2)}^2+3\right )}^2\right )-x^3\,\left (2\,{\ln \relax (3)}^2\,{\ln \relax (x)}^2-6\,{\ln \relax (3)}^2\,\left (4\,{\ln \relax (2)}^2+1\right )\right )-x^2\,\left (8\,\ln \relax (2)\,\ln \relax (3)\,{\ln \relax (x)}^2-8\,\ln \relax (2)\,\ln \relax (3)\,\left (4\,{\ln \relax (2)}^2+3\right )\right )+8\,x^4\,\ln \relax (2)\,{\ln \relax (3)}^3}{x^5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.15, size = 124, normalized size = 5.39 \begin {gather*} \frac {\left (- 2 x^{2} \log {\relax (3 )}^{2} - 8 x \log {\relax (2 )} \log {\relax (3 )} - 6 - 8 \log {\relax (2 )}^{2}\right ) \log {\relax (x )}^{2}}{x^{4}} - \frac {- 8 x^{3} \log {\relax (2 )} \log {\relax (3 )}^{3} + x^{2} \left (- 24 \log {\relax (2 )}^{2} \log {\relax (3 )}^{2} - 6 \log {\relax (3 )}^{2}\right ) + x \left (- 24 \log {\relax (2 )} \log {\relax (3 )} - 32 \log {\relax (2 )}^{3} \log {\relax (3 )}\right ) - 24 \log {\relax (2 )}^{2} - 9 - 16 \log {\relax (2 )}^{4}}{x^{4}} + \frac {\log {\relax (x )}^{4}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________