Optimal. Leaf size=22 \[ \frac {1+x}{2 x}-\frac {\log (3) \log (5+x)}{x} \]
________________________________________________________________________________________
Rubi [B] time = 0.22, antiderivative size = 55, normalized size of antiderivative = 2.50, number of steps used = 10, number of rules used = 8, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {6, 1593, 6742, 77, 2395, 36, 29, 31} \begin {gather*} \frac {1}{2 x}-\frac {1}{10} \log (9) \log (x)+\frac {1}{5} \log (3) \log (x)+\frac {1}{10} \log (9) \log (x+5)-\frac {\log (3) \log (x+5)}{x}-\frac {1}{5} \log (3) \log (x+5) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 29
Rule 31
Rule 36
Rule 77
Rule 1593
Rule 2395
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-5+x (-1-2 \log (3))+(10+2 x) \log (3) \log (5+x)}{10 x^2+2 x^3} \, dx\\ &=\int \frac {-5+x (-1-2 \log (3))+(10+2 x) \log (3) \log (5+x)}{x^2 (10+2 x)} \, dx\\ &=\int \left (\frac {-5-x (1+\log (9))}{2 x^2 (5+x)}+\frac {\log (3) \log (5+x)}{x^2}\right ) \, dx\\ &=\frac {1}{2} \int \frac {-5-x (1+\log (9))}{x^2 (5+x)} \, dx+\log (3) \int \frac {\log (5+x)}{x^2} \, dx\\ &=-\frac {\log (3) \log (5+x)}{x}+\frac {1}{2} \int \left (-\frac {1}{x^2}-\frac {\log (9)}{5 x}+\frac {\log (9)}{5 (5+x)}\right ) \, dx+\log (3) \int \frac {1}{x (5+x)} \, dx\\ &=\frac {1}{2 x}-\frac {1}{10} \log (9) \log (x)-\frac {\log (3) \log (5+x)}{x}+\frac {1}{10} \log (9) \log (5+x)+\frac {1}{5} \log (3) \int \frac {1}{x} \, dx-\frac {1}{5} \log (3) \int \frac {1}{5+x} \, dx\\ &=\frac {1}{2 x}+\frac {1}{5} \log (3) \log (x)-\frac {1}{10} \log (9) \log (x)-\frac {1}{5} \log (3) \log (5+x)-\frac {\log (3) \log (5+x)}{x}+\frac {1}{10} \log (9) \log (5+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 19, normalized size = 0.86 \begin {gather*} \frac {1}{2} \left (\frac {1}{x}-\frac {\log (9) \log (5+x)}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 15, normalized size = 0.68 \begin {gather*} -\frac {2 \, \log \relax (3) \log \left (x + 5\right ) - 1}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 17, normalized size = 0.77 \begin {gather*} -\frac {\log \relax (3) \log \left (x + 5\right )}{x} + \frac {1}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.38, size = 15, normalized size = 0.68
method | result | size |
norman | \(\frac {\frac {1}{2}-\ln \relax (3) \ln \left (5+x \right )}{x}\) | \(15\) |
risch | \(-\frac {\ln \left (5+x \right ) \ln \relax (3)}{x}+\frac {1}{2 x}\) | \(18\) |
derivativedivides | \(-\frac {\ln \relax (3) \ln \left (5+x \right ) \left (5+x \right )}{5 x}+\frac {\ln \relax (3) \ln \left (5+x \right )}{5}+\frac {1}{2 x}\) | \(29\) |
default | \(-\frac {\ln \relax (3) \ln \left (5+x \right ) \left (5+x \right )}{5 x}+\frac {\ln \relax (3) \ln \left (5+x \right )}{5}+\frac {1}{2 x}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 43, normalized size = 1.95 \begin {gather*} \frac {1}{5} \, {\left (\log \left (x + 5\right ) - \log \relax (x)\right )} \log \relax (3) + \frac {1}{5} \, \log \relax (3) \log \relax (x) - \frac {{\left (x \log \relax (3) + 5 \, \log \relax (3)\right )} \log \left (x + 5\right )}{5 \, x} + \frac {1}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.49, size = 46, normalized size = 2.09 \begin {gather*} -\frac {25\,\ln \left (x+5\right )\,\ln \relax (3)+x\,\left (10\,\ln \left (x+5\right )\,\ln \relax (3)-5\right )+x^2\,\left (\frac {\ln \left (x+5\right )\,\ln \relax (9)}{2}-\frac {1}{2}\right )-\frac {25}{2}}{x\,{\left (x+5\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 14, normalized size = 0.64 \begin {gather*} - \frac {\log {\relax (3 )} \log {\left (x + 5 \right )}}{x} + \frac {1}{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________