Optimal. Leaf size=23 \[ -4+2 x+\frac {1}{5} \left (5+x+x^{\frac {1}{(-1+x) x}}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.43, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {11 x^2-22 x^3+11 x^4+x^{\frac {1}{-x+x^2}} (-1+x+(1-2 x) \log (x))}{5 x^2-10 x^3+5 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {11 x^2-22 x^3+11 x^4+x^{\frac {1}{-x+x^2}} (-1+x+(1-2 x) \log (x))}{x^2 \left (5-10 x+5 x^2\right )} \, dx\\ &=\int \frac {11 x^2-22 x^3+11 x^4+x^{\frac {1}{-x+x^2}} (-1+x+(1-2 x) \log (x))}{5 (-1+x)^2 x^2} \, dx\\ &=\frac {1}{5} \int \frac {11 x^2-22 x^3+11 x^4+x^{\frac {1}{-x+x^2}} (-1+x+(1-2 x) \log (x))}{(-1+x)^2 x^2} \, dx\\ &=\frac {1}{5} \int \left (11-\frac {x^{-2+\frac {1}{(-1+x) x}} (1-x-\log (x)+2 x \log (x))}{(-1+x)^2}\right ) \, dx\\ &=\frac {11 x}{5}-\frac {1}{5} \int \frac {x^{-2+\frac {1}{(-1+x) x}} (1-x-\log (x)+2 x \log (x))}{(-1+x)^2} \, dx\\ &=\frac {11 x}{5}-\frac {1}{5} \int \left (\frac {x^{-2+\frac {1}{(-1+x) x}}}{1-x}+\frac {x^{-2+\frac {1}{(-1+x) x}} (-1+2 x) \log (x)}{(-1+x)^2}\right ) \, dx\\ &=\frac {11 x}{5}-\frac {1}{5} \int \frac {x^{-2+\frac {1}{(-1+x) x}}}{1-x} \, dx-\frac {1}{5} \int \frac {x^{-2+\frac {1}{(-1+x) x}} (-1+2 x) \log (x)}{(-1+x)^2} \, dx\\ &=\frac {11 x}{5}+\frac {x^{-1-\frac {1}{(1-x) x}} \, _2F_1\left (1,-1-\frac {1}{(1-x) x};-\frac {1}{(1-x) x};x\right )}{5 \left (1+\frac {1}{(1-x) x}\right )}-\frac {1}{5} \int \left (\frac {x^{-2+\frac {1}{(-1+x) x}} \log (x)}{(-1+x)^2}+\frac {2 x^{-2+\frac {1}{(-1+x) x}} \log (x)}{-1+x}\right ) \, dx\\ &=\frac {11 x}{5}+\frac {x^{-1-\frac {1}{(1-x) x}} \, _2F_1\left (1,-1-\frac {1}{(1-x) x};-\frac {1}{(1-x) x};x\right )}{5 \left (1+\frac {1}{(1-x) x}\right )}-\frac {1}{5} \int \frac {x^{-2+\frac {1}{(-1+x) x}} \log (x)}{(-1+x)^2} \, dx-\frac {2}{5} \int \frac {x^{-2+\frac {1}{(-1+x) x}} \log (x)}{-1+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 19, normalized size = 0.83 \begin {gather*} \frac {1}{5} \left (11 x+x^{\frac {1}{(-1+x) x}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 17, normalized size = 0.74 \begin {gather*} \frac {11}{5} \, x + \frac {1}{5} \, x^{\left (\frac {1}{x^{2} - x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.88, size = 34, normalized size = 1.48 \begin {gather*} \frac {11}{5} \, x + \frac {e^{\left (\frac {x^{2} \log \relax (x) - x \log \relax (x) + \log \relax (x)}{x^{2} - x}\right )}}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 18, normalized size = 0.78
method | result | size |
risch | \(\frac {11 x}{5}+\frac {x^{\frac {1}{x \left (x -1\right )}}}{5}\) | \(18\) |
norman | \(\frac {-\frac {11 x}{5}+\frac {11 x^{3}}{5}-\frac {x \,{\mathrm e}^{\frac {\ln \relax (x )}{x^{2}-x}}}{5}+\frac {x^{2} {\mathrm e}^{\frac {\ln \relax (x )}{x^{2}-x}}}{5}}{x \left (x -1\right )}\) | \(53\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 23, normalized size = 1.00 \begin {gather*} \frac {11}{5} \, x + \frac {1}{5} \, e^{\left (\frac {\log \relax (x)}{x - 1} - \frac {\log \relax (x)}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.59, size = 19, normalized size = 0.83 \begin {gather*} \frac {11\,x}{5}+\frac {1}{5\,x^{\frac {1}{x-x^2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 15, normalized size = 0.65 \begin {gather*} \frac {11 x}{5} + \frac {e^{\frac {\log {\relax (x )}}{x^{2} - x}}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________