Optimal. Leaf size=30 \[ 15 \left (-1-e^{e^{e^{e^5}}}+e^{e^x}+x+\frac {x}{2-x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 20, normalized size of antiderivative = 0.67, number of steps used = 7, number of rules used = 5, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.128, Rules used = {27, 6742, 2282, 2194, 683} \begin {gather*} 15 x+15 e^{e^x}+\frac {30}{2-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 683
Rule 2194
Rule 2282
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {90-60 x+15 x^2+e^{e^x+x} \left (60-60 x+15 x^2\right )}{(-2+x)^2} \, dx\\ &=\int \left (15 e^{e^x+x}+\frac {15 \left (6-4 x+x^2\right )}{(-2+x)^2}\right ) \, dx\\ &=15 \int e^{e^x+x} \, dx+15 \int \frac {6-4 x+x^2}{(-2+x)^2} \, dx\\ &=15 \int \left (1+\frac {2}{(-2+x)^2}\right ) \, dx+15 \operatorname {Subst}\left (\int e^x \, dx,x,e^x\right )\\ &=15 e^{e^x}+\frac {30}{2-x}+15 x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 18, normalized size = 0.60 \begin {gather*} 15 \left (e^{e^x}+\frac {2}{2-x}+x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 32, normalized size = 1.07 \begin {gather*} \frac {15 \, {\left ({\left (x - 2\right )} e^{\left (x + e^{x}\right )} + {\left (x^{2} - 2 \, x - 2\right )} e^{x}\right )} e^{\left (-x\right )}}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 43, normalized size = 1.43 \begin {gather*} \frac {15 \, {\left (x^{2} e^{x} + x e^{\left (x + e^{x}\right )} - 2 \, x e^{x} - 2 \, e^{\left (x + e^{x}\right )} - 2 \, e^{x}\right )}}{x e^{x} - 2 \, e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.44, size = 17, normalized size = 0.57
method | result | size |
risch | \(-\frac {30}{x -2}+15 x +15 \,{\mathrm e}^{{\mathrm e}^{x}}\) | \(17\) |
norman | \(\frac {15 x^{2}+15 x \,{\mathrm e}^{{\mathrm e}^{x}}-30 \,{\mathrm e}^{{\mathrm e}^{x}}-90}{x -2}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 16, normalized size = 0.53 \begin {gather*} 15 \, x - \frac {30}{x - 2} + 15 \, e^{\left (e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.18, size = 16, normalized size = 0.53 \begin {gather*} 15\,x+15\,{\mathrm {e}}^{{\mathrm {e}}^x}-\frac {30}{x-2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 14, normalized size = 0.47 \begin {gather*} 15 x + 15 e^{e^{x}} - \frac {30}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________