Optimal. Leaf size=18 \[ \frac {4 \left (1+e^9+x\right )}{4+\log \left (\frac {81 x}{16}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.32, antiderivative size = 31, normalized size of antiderivative = 1.72, number of steps used = 13, number of rules used = 9, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {6688, 12, 6742, 2353, 2297, 2299, 2178, 2302, 30} \begin {gather*} \frac {4 x}{\log \left (\frac {81 x}{16}\right )+4}+\frac {4 \left (1+e^9\right )}{\log \left (\frac {81 x}{16}\right )+4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 2178
Rule 2297
Rule 2299
Rule 2302
Rule 2353
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \left (-1-e^9+3 x+x \log \left (\frac {81 x}{16}\right )\right )}{x \left (4+\log \left (\frac {81 x}{16}\right )\right )^2} \, dx\\ &=4 \int \frac {-1-e^9+3 x+x \log \left (\frac {81 x}{16}\right )}{x \left (4+\log \left (\frac {81 x}{16}\right )\right )^2} \, dx\\ &=4 \int \left (\frac {-1-e^9-x}{x \left (4+\log \left (\frac {81 x}{16}\right )\right )^2}+\frac {1}{4+\log \left (\frac {81 x}{16}\right )}\right ) \, dx\\ &=4 \int \frac {-1-e^9-x}{x \left (4+\log \left (\frac {81 x}{16}\right )\right )^2} \, dx+4 \int \frac {1}{4+\log \left (\frac {81 x}{16}\right )} \, dx\\ &=\frac {64}{81} \operatorname {Subst}\left (\int \frac {e^x}{4+x} \, dx,x,\log \left (\frac {81 x}{16}\right )\right )+4 \int \left (-\frac {1}{\left (4+\log \left (\frac {81 x}{16}\right )\right )^2}+\frac {-1-e^9}{x \left (4+\log \left (\frac {81 x}{16}\right )\right )^2}\right ) \, dx\\ &=\frac {64 \text {Ei}\left (4+\log \left (\frac {81 x}{16}\right )\right )}{81 e^4}-4 \int \frac {1}{\left (4+\log \left (\frac {81 x}{16}\right )\right )^2} \, dx-\left (4 \left (1+e^9\right )\right ) \int \frac {1}{x \left (4+\log \left (\frac {81 x}{16}\right )\right )^2} \, dx\\ &=\frac {64 \text {Ei}\left (4+\log \left (\frac {81 x}{16}\right )\right )}{81 e^4}+\frac {4 x}{4+\log \left (\frac {81 x}{16}\right )}-4 \int \frac {1}{4+\log \left (\frac {81 x}{16}\right )} \, dx-\left (4 \left (1+e^9\right )\right ) \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,4+\log \left (\frac {81 x}{16}\right )\right )\\ &=\frac {64 \text {Ei}\left (4+\log \left (\frac {81 x}{16}\right )\right )}{81 e^4}+\frac {4 \left (1+e^9\right )}{4+\log \left (\frac {81 x}{16}\right )}+\frac {4 x}{4+\log \left (\frac {81 x}{16}\right )}-\frac {64}{81} \operatorname {Subst}\left (\int \frac {e^x}{4+x} \, dx,x,\log \left (\frac {81 x}{16}\right )\right )\\ &=\frac {4 \left (1+e^9\right )}{4+\log \left (\frac {81 x}{16}\right )}+\frac {4 x}{4+\log \left (\frac {81 x}{16}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 18, normalized size = 1.00 \begin {gather*} \frac {4 \left (1+e^9+x\right )}{4+\log \left (\frac {81 x}{16}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.10, size = 15, normalized size = 0.83 \begin {gather*} \frac {4 \, {\left (x + e^{9} + 1\right )}}{\log \left (\frac {81}{16} \, x\right ) + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 15, normalized size = 0.83 \begin {gather*} \frac {4 \, {\left (x + e^{9} + 1\right )}}{\log \left (\frac {81}{16} \, x\right ) + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 16, normalized size = 0.89
method | result | size |
risch | \(\frac {4 x +4+4 \,{\mathrm e}^{9}}{\ln \left (\frac {81 x}{16}\right )+4}\) | \(16\) |
norman | \(\frac {4 x +4+4 \,{\mathrm e}^{9}}{\ln \left (\frac {81 x}{16}\right )+4}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.47, size = 52, normalized size = 2.89 \begin {gather*} \frac {4 \, x}{4 \, \log \relax (3) - 4 \, \log \relax (2) + \log \relax (x) + 4} + \frac {4 \, e^{9}}{4 \, \log \relax (3) - 4 \, \log \relax (2) + \log \relax (x) + 4} + \frac {4}{4 \, \log \relax (3) - 4 \, \log \relax (2) + \log \relax (x) + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.93, size = 18, normalized size = 1.00 \begin {gather*} \frac {4\,x+4\,{\mathrm {e}}^9+4}{\ln \left (\frac {81\,x}{16}\right )+4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 17, normalized size = 0.94 \begin {gather*} \frac {4 x + 4 + 4 e^{9}}{\log {\left (\frac {81 x}{16} \right )} + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________