Optimal. Leaf size=24 \[ \frac {\log \left (15 \left (16+x-\frac {3 x^2}{4 e^6 \log ^2(x)}\right )\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 11.60, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {6 x^2-6 x^2 \log (x)+4 e^6 x \log ^3(x)+\left (3 x^2 \log (x)+e^6 (-64-4 x) \log ^3(x)\right ) \log \left (\frac {-45 x^2+e^6 (960+60 x) \log ^2(x)}{4 e^6 \log ^2(x)}\right )}{-3 x^4 \log (x)+e^6 \left (64 x^2+4 x^3\right ) \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2 \left (-3 x+3 x \log (x)-2 e^6 \log ^3(x)\right )}{x \log (x) \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )}-\frac {\log \left (15 (16+x)-\frac {45 x^2}{4 e^6 \log ^2(x)}\right )}{x^2}\right ) \, dx\\ &=2 \int \frac {-3 x+3 x \log (x)-2 e^6 \log ^3(x)}{x \log (x) \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )} \, dx-\int \frac {\log \left (15 (16+x)-\frac {45 x^2}{4 e^6 \log ^2(x)}\right )}{x^2} \, dx\\ &=2 \int \frac {-3 x+3 x \log (x)-2 e^6 \log ^3(x)}{3 x^3 \log (x)-4 e^6 x (16+x) \log ^3(x)} \, dx-\int \frac {\log \left (15 (16+x)-\frac {45 x^2}{4 e^6 \log ^2(x)}\right )}{x^2} \, dx\\ &=2 \int \left (\frac {1}{2 x (16+x)}-\frac {1}{x^2 \log (x)}+\frac {96 x^2+3 x^3-2048 e^6 \log (x)-256 e^6 x \log (x)-8 e^6 x^2 \log (x)}{2 x^2 (16+x) \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )}\right ) \, dx-\int \frac {\log \left (15 (16+x)-\frac {45 x^2}{4 e^6 \log ^2(x)}\right )}{x^2} \, dx\\ &=-\left (2 \int \frac {1}{x^2 \log (x)} \, dx\right )+\int \frac {1}{x (16+x)} \, dx+\int \frac {96 x^2+3 x^3-2048 e^6 \log (x)-256 e^6 x \log (x)-8 e^6 x^2 \log (x)}{x^2 (16+x) \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )} \, dx-\int \frac {\log \left (15 (16+x)-\frac {45 x^2}{4 e^6 \log ^2(x)}\right )}{x^2} \, dx\\ &=\frac {1}{16} \int \frac {1}{x} \, dx-\frac {1}{16} \int \frac {1}{16+x} \, dx-2 \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (x)\right )+\int \frac {3 x^2 (32+x)-8 e^6 (16+x)^2 \log (x)}{x^2 (16+x) \left (3 x^2-4 e^6 (16+x) \log ^2(x)\right )} \, dx-\int \frac {\log \left (15 (16+x)-\frac {45 x^2}{4 e^6 \log ^2(x)}\right )}{x^2} \, dx\\ &=-2 \text {Ei}(-\log (x))+\frac {\log (x)}{16}-\frac {1}{16} \log (16+x)+\int \left (\frac {96 x^2+3 x^3-2048 e^6 \log (x)-256 e^6 x \log (x)-8 e^6 x^2 \log (x)}{16 x^2 \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )}+\frac {96 x^2+3 x^3-2048 e^6 \log (x)-256 e^6 x \log (x)-8 e^6 x^2 \log (x)}{256 (16+x) \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )}+\frac {-96 x^2-3 x^3+2048 e^6 \log (x)+256 e^6 x \log (x)+8 e^6 x^2 \log (x)}{256 x \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )}\right ) \, dx-\int \frac {\log \left (15 (16+x)-\frac {45 x^2}{4 e^6 \log ^2(x)}\right )}{x^2} \, dx\\ &=-2 \text {Ei}(-\log (x))+\frac {\log (x)}{16}-\frac {1}{16} \log (16+x)+\frac {1}{256} \int \frac {96 x^2+3 x^3-2048 e^6 \log (x)-256 e^6 x \log (x)-8 e^6 x^2 \log (x)}{(16+x) \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )} \, dx+\frac {1}{256} \int \frac {-96 x^2-3 x^3+2048 e^6 \log (x)+256 e^6 x \log (x)+8 e^6 x^2 \log (x)}{x \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )} \, dx+\frac {1}{16} \int \frac {96 x^2+3 x^3-2048 e^6 \log (x)-256 e^6 x \log (x)-8 e^6 x^2 \log (x)}{x^2 \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )} \, dx-\int \frac {\log \left (15 (16+x)-\frac {45 x^2}{4 e^6 \log ^2(x)}\right )}{x^2} \, dx\\ &=-2 \text {Ei}(-\log (x))+\frac {\log (x)}{16}-\frac {1}{16} \log (16+x)+\frac {1}{256} \int \frac {3 x^2 (32+x)-8 e^6 (16+x)^2 \log (x)}{(16+x) \left (3 x^2-4 e^6 (16+x) \log ^2(x)\right )} \, dx+\frac {1}{256} \int \frac {-3 x^2 (32+x)+8 e^6 (16+x)^2 \log (x)}{3 x^3-4 e^6 x (16+x) \log ^2(x)} \, dx+\frac {1}{16} \int \frac {3 x^2 (32+x)-8 e^6 (16+x)^2 \log (x)}{3 x^4-4 e^6 x^2 (16+x) \log ^2(x)} \, dx-\int \frac {\log \left (15 (16+x)-\frac {45 x^2}{4 e^6 \log ^2(x)}\right )}{x^2} \, dx\\ &=-2 \text {Ei}(-\log (x))+\frac {\log (x)}{16}-\frac {1}{16} \log (16+x)+\frac {1}{256} \int \left (\frac {96 x^2}{(16+x) \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )}+\frac {3 x^3}{(16+x) \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )}-\frac {2048 e^6 \log (x)}{(16+x) \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )}-\frac {256 e^6 x \log (x)}{(16+x) \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )}-\frac {8 e^6 x^2 \log (x)}{(16+x) \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )}\right ) \, dx+\frac {1}{256} \int \left (-\frac {96 x}{3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)}-\frac {3 x^2}{3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)}-\frac {256 e^6 \log (x)}{-3 x^2+64 e^6 \log ^2(x)+4 e^6 x \log ^2(x)}-\frac {2048 e^6 \log (x)}{x \left (-3 x^2+64 e^6 \log ^2(x)+4 e^6 x \log ^2(x)\right )}-\frac {8 e^6 x \log (x)}{-3 x^2+64 e^6 \log ^2(x)+4 e^6 x \log ^2(x)}\right ) \, dx+\frac {1}{16} \int \left (\frac {96}{3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)}+\frac {3 x}{3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)}+\frac {8 e^6 \log (x)}{-3 x^2+64 e^6 \log ^2(x)+4 e^6 x \log ^2(x)}+\frac {2048 e^6 \log (x)}{x^2 \left (-3 x^2+64 e^6 \log ^2(x)+4 e^6 x \log ^2(x)\right )}+\frac {256 e^6 \log (x)}{x \left (-3 x^2+64 e^6 \log ^2(x)+4 e^6 x \log ^2(x)\right )}\right ) \, dx-\int \frac {\log \left (15 (16+x)-\frac {45 x^2}{4 e^6 \log ^2(x)}\right )}{x^2} \, dx\\ &=-2 \text {Ei}(-\log (x))+\frac {\log (x)}{16}-\frac {1}{16} \log (16+x)-\frac {3}{256} \int \frac {x^2}{3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)} \, dx+\frac {3}{256} \int \frac {x^3}{(16+x) \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )} \, dx+\frac {3}{16} \int \frac {x}{3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)} \, dx-\frac {3}{8} \int \frac {x}{3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)} \, dx+\frac {3}{8} \int \frac {x^2}{(16+x) \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )} \, dx+6 \int \frac {1}{3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)} \, dx-\frac {1}{32} e^6 \int \frac {x^2 \log (x)}{(16+x) \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )} \, dx-\frac {1}{32} e^6 \int \frac {x \log (x)}{-3 x^2+64 e^6 \log ^2(x)+4 e^6 x \log ^2(x)} \, dx+\frac {1}{2} e^6 \int \frac {\log (x)}{-3 x^2+64 e^6 \log ^2(x)+4 e^6 x \log ^2(x)} \, dx-e^6 \int \frac {x \log (x)}{(16+x) \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )} \, dx-e^6 \int \frac {\log (x)}{-3 x^2+64 e^6 \log ^2(x)+4 e^6 x \log ^2(x)} \, dx-\left (8 e^6\right ) \int \frac {\log (x)}{(16+x) \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )} \, dx-\left (8 e^6\right ) \int \frac {\log (x)}{x \left (-3 x^2+64 e^6 \log ^2(x)+4 e^6 x \log ^2(x)\right )} \, dx+\left (16 e^6\right ) \int \frac {\log (x)}{x \left (-3 x^2+64 e^6 \log ^2(x)+4 e^6 x \log ^2(x)\right )} \, dx+\left (128 e^6\right ) \int \frac {\log (x)}{x^2 \left (-3 x^2+64 e^6 \log ^2(x)+4 e^6 x \log ^2(x)\right )} \, dx-\int \frac {\log \left (15 (16+x)-\frac {45 x^2}{4 e^6 \log ^2(x)}\right )}{x^2} \, dx\\ &=-2 \text {Ei}(-\log (x))+\frac {\log (x)}{16}-\frac {1}{16} \log (16+x)-\frac {3}{256} \int \frac {x^2}{3 x^2-4 e^6 (16+x) \log ^2(x)} \, dx+\frac {3}{256} \int \frac {x^3}{(16+x) \left (3 x^2-4 e^6 (16+x) \log ^2(x)\right )} \, dx+\frac {3}{16} \int \frac {x}{3 x^2-4 e^6 (16+x) \log ^2(x)} \, dx-\frac {3}{8} \int \frac {x}{3 x^2-4 e^6 (16+x) \log ^2(x)} \, dx+\frac {3}{8} \int \frac {x^2}{(16+x) \left (3 x^2-4 e^6 (16+x) \log ^2(x)\right )} \, dx+6 \int \frac {1}{3 x^2-4 e^6 (16+x) \log ^2(x)} \, dx-\frac {1}{32} e^6 \int \frac {x^2 \log (x)}{(16+x) \left (3 x^2-4 e^6 (16+x) \log ^2(x)\right )} \, dx-\frac {1}{32} e^6 \int \frac {x \log (x)}{-3 x^2+4 e^6 (16+x) \log ^2(x)} \, dx+\frac {1}{2} e^6 \int \frac {\log (x)}{-3 x^2+4 e^6 (16+x) \log ^2(x)} \, dx-e^6 \int \frac {x \log (x)}{(16+x) \left (3 x^2-4 e^6 (16+x) \log ^2(x)\right )} \, dx-e^6 \int \frac {\log (x)}{-3 x^2+4 e^6 (16+x) \log ^2(x)} \, dx-\left (8 e^6\right ) \int \frac {\log (x)}{(16+x) \left (3 x^2-4 e^6 (16+x) \log ^2(x)\right )} \, dx-\left (8 e^6\right ) \int \frac {\log (x)}{-3 x^3+4 e^6 x (16+x) \log ^2(x)} \, dx+\left (16 e^6\right ) \int \frac {\log (x)}{-3 x^3+4 e^6 x (16+x) \log ^2(x)} \, dx+\left (128 e^6\right ) \int \frac {\log (x)}{-3 x^4+4 e^6 x^2 (16+x) \log ^2(x)} \, dx-\int \frac {\log \left (15 (16+x)-\frac {45 x^2}{4 e^6 \log ^2(x)}\right )}{x^2} \, dx\\ &=-2 \text {Ei}(-\log (x))+\frac {\log (x)}{16}-\frac {1}{16} \log (16+x)-\frac {3}{256} \int \frac {x^2}{3 x^2-4 e^6 (16+x) \log ^2(x)} \, dx+\frac {3}{256} \int \left (\frac {256}{3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)}-\frac {16 x}{3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)}+\frac {x^2}{3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)}-\frac {4096}{(16+x) \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )}\right ) \, dx+\frac {3}{16} \int \frac {x}{3 x^2-4 e^6 (16+x) \log ^2(x)} \, dx-\frac {3}{8} \int \frac {x}{3 x^2-4 e^6 (16+x) \log ^2(x)} \, dx+\frac {3}{8} \int \left (-\frac {16}{3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)}+\frac {x}{3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)}+\frac {256}{(16+x) \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )}\right ) \, dx+6 \int \frac {1}{3 x^2-4 e^6 (16+x) \log ^2(x)} \, dx-\frac {1}{32} e^6 \int \frac {x \log (x)}{-3 x^2+4 e^6 (16+x) \log ^2(x)} \, dx-\frac {1}{32} e^6 \int \left (\frac {x \log (x)}{3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)}+\frac {256 \log (x)}{(16+x) \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )}+\frac {16 \log (x)}{-3 x^2+64 e^6 \log ^2(x)+4 e^6 x \log ^2(x)}\right ) \, dx+\frac {1}{2} e^6 \int \frac {\log (x)}{-3 x^2+4 e^6 (16+x) \log ^2(x)} \, dx-e^6 \int \frac {\log (x)}{-3 x^2+4 e^6 (16+x) \log ^2(x)} \, dx-e^6 \int \left (-\frac {16 \log (x)}{(16+x) \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )}-\frac {\log (x)}{-3 x^2+64 e^6 \log ^2(x)+4 e^6 x \log ^2(x)}\right ) \, dx-\left (8 e^6\right ) \int \frac {\log (x)}{(16+x) \left (3 x^2-4 e^6 (16+x) \log ^2(x)\right )} \, dx-\left (8 e^6\right ) \int \frac {\log (x)}{-3 x^3+4 e^6 x (16+x) \log ^2(x)} \, dx+\left (16 e^6\right ) \int \frac {\log (x)}{-3 x^3+4 e^6 x (16+x) \log ^2(x)} \, dx+\left (128 e^6\right ) \int \frac {\log (x)}{-3 x^4+4 e^6 x^2 (16+x) \log ^2(x)} \, dx-\int \frac {\log \left (15 (16+x)-\frac {45 x^2}{4 e^6 \log ^2(x)}\right )}{x^2} \, dx\\ &=-2 \text {Ei}(-\log (x))+\frac {\log (x)}{16}-\frac {1}{16} \log (16+x)+\frac {3}{256} \int \frac {x^2}{3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)} \, dx-\frac {3}{256} \int \frac {x^2}{3 x^2-4 e^6 (16+x) \log ^2(x)} \, dx-\frac {3}{16} \int \frac {x}{3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)} \, dx+\frac {3}{16} \int \frac {x}{3 x^2-4 e^6 (16+x) \log ^2(x)} \, dx+\frac {3}{8} \int \frac {x}{3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)} \, dx-\frac {3}{8} \int \frac {x}{3 x^2-4 e^6 (16+x) \log ^2(x)} \, dx+3 \int \frac {1}{3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)} \, dx-6 \int \frac {1}{3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)} \, dx+6 \int \frac {1}{3 x^2-4 e^6 (16+x) \log ^2(x)} \, dx-48 \int \frac {1}{(16+x) \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )} \, dx+96 \int \frac {1}{(16+x) \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )} \, dx-\frac {1}{32} e^6 \int \frac {x \log (x)}{3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)} \, dx-\frac {1}{32} e^6 \int \frac {x \log (x)}{-3 x^2+4 e^6 (16+x) \log ^2(x)} \, dx-\frac {1}{2} e^6 \int \frac {\log (x)}{-3 x^2+64 e^6 \log ^2(x)+4 e^6 x \log ^2(x)} \, dx+\frac {1}{2} e^6 \int \frac {\log (x)}{-3 x^2+4 e^6 (16+x) \log ^2(x)} \, dx+e^6 \int \frac {\log (x)}{-3 x^2+64 e^6 \log ^2(x)+4 e^6 x \log ^2(x)} \, dx-e^6 \int \frac {\log (x)}{-3 x^2+4 e^6 (16+x) \log ^2(x)} \, dx-\left (8 e^6\right ) \int \frac {\log (x)}{(16+x) \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )} \, dx-\left (8 e^6\right ) \int \frac {\log (x)}{(16+x) \left (3 x^2-4 e^6 (16+x) \log ^2(x)\right )} \, dx-\left (8 e^6\right ) \int \frac {\log (x)}{-3 x^3+4 e^6 x (16+x) \log ^2(x)} \, dx+\left (16 e^6\right ) \int \frac {\log (x)}{(16+x) \left (3 x^2-64 e^6 \log ^2(x)-4 e^6 x \log ^2(x)\right )} \, dx+\left (16 e^6\right ) \int \frac {\log (x)}{-3 x^3+4 e^6 x (16+x) \log ^2(x)} \, dx+\left (128 e^6\right ) \int \frac {\log (x)}{-3 x^4+4 e^6 x^2 (16+x) \log ^2(x)} \, dx-\int \frac {\log \left (15 (16+x)-\frac {45 x^2}{4 e^6 \log ^2(x)}\right )}{x^2} \, dx\\ &=-2 \text {Ei}(-\log (x))+\frac {\log (x)}{16}-\frac {1}{16} \log (16+x)+3 \int \frac {1}{3 x^2-4 e^6 (16+x) \log ^2(x)} \, dx-48 \int \frac {1}{(16+x) \left (3 x^2-4 e^6 (16+x) \log ^2(x)\right )} \, dx+96 \int \frac {1}{(16+x) \left (3 x^2-4 e^6 (16+x) \log ^2(x)\right )} \, dx-\frac {1}{32} e^6 \int \frac {x \log (x)}{3 x^2-4 e^6 (16+x) \log ^2(x)} \, dx-\frac {1}{32} e^6 \int \frac {x \log (x)}{-3 x^2+4 e^6 (16+x) \log ^2(x)} \, dx-2 \left (\left (8 e^6\right ) \int \frac {\log (x)}{(16+x) \left (3 x^2-4 e^6 (16+x) \log ^2(x)\right )} \, dx\right )-\left (8 e^6\right ) \int \frac {\log (x)}{-3 x^3+4 e^6 x (16+x) \log ^2(x)} \, dx+\left (16 e^6\right ) \int \frac {\log (x)}{(16+x) \left (3 x^2-4 e^6 (16+x) \log ^2(x)\right )} \, dx+\left (16 e^6\right ) \int \frac {\log (x)}{-3 x^3+4 e^6 x (16+x) \log ^2(x)} \, dx+\left (128 e^6\right ) \int \frac {\log (x)}{-3 x^4+4 e^6 x^2 (16+x) \log ^2(x)} \, dx-\int \frac {\log \left (15 (16+x)-\frac {45 x^2}{4 e^6 \log ^2(x)}\right )}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 25, normalized size = 1.04 \begin {gather*} \frac {\log \left (15 (16+x)-\frac {45 x^2}{4 e^6 \log ^2(x)}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.93, size = 30, normalized size = 1.25 \begin {gather*} \frac {\log \left (\frac {15 \, {\left (4 \, {\left (x + 16\right )} e^{6} \log \relax (x)^{2} - 3 \, x^{2}\right )} e^{\left (-6\right )}}{4 \, \log \relax (x)^{2}}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.40, size = 39, normalized size = 1.62 \begin {gather*} \frac {\log \left (60 \, x e^{6} \log \relax (x)^{2} + 960 \, e^{6} \log \relax (x)^{2} - 45 \, x^{2}\right ) - \log \left (4 \, \log \relax (x)^{2}\right ) - 6}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.61, size = 313, normalized size = 13.04
method | result | size |
risch | \(\frac {\ln \left (\left (x \ln \relax (x )^{2}+16 \ln \relax (x )^{2}\right ) {\mathrm e}^{6}-\frac {3 x^{2}}{4}\right )}{x}+\frac {i \pi \mathrm {csgn}\left (i \ln \relax (x )\right )^{2} \mathrm {csgn}\left (i \ln \relax (x )^{2}\right )-2 i \pi \,\mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i \ln \relax (x )^{2}\right )^{2}+i \pi \,\mathrm {csgn}\left (i \left (\left (x \ln \relax (x )^{2}+16 \ln \relax (x )^{2}\right ) {\mathrm e}^{6}-\frac {3 x^{2}}{4}\right )\right ) \mathrm {csgn}\left (\frac {i \left (\left (x \ln \relax (x )^{2}+16 \ln \relax (x )^{2}\right ) {\mathrm e}^{6}-\frac {3 x^{2}}{4}\right )}{\ln \relax (x )^{2}}\right )^{2}-i \pi \,\mathrm {csgn}\left (i \left (\left (x \ln \relax (x )^{2}+16 \ln \relax (x )^{2}\right ) {\mathrm e}^{6}-\frac {3 x^{2}}{4}\right )\right ) \mathrm {csgn}\left (\frac {i \left (\left (x \ln \relax (x )^{2}+16 \ln \relax (x )^{2}\right ) {\mathrm e}^{6}-\frac {3 x^{2}}{4}\right )}{\ln \relax (x )^{2}}\right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )^{2}}\right )-12+i \pi \mathrm {csgn}\left (\frac {i \left (\left (x \ln \relax (x )^{2}+16 \ln \relax (x )^{2}\right ) {\mathrm e}^{6}-\frac {3 x^{2}}{4}\right )}{\ln \relax (x )^{2}}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )^{2}}\right )-i \pi \mathrm {csgn}\left (\frac {i \left (\left (x \ln \relax (x )^{2}+16 \ln \relax (x )^{2}\right ) {\mathrm e}^{6}-\frac {3 x^{2}}{4}\right )}{\ln \relax (x )^{2}}\right )^{3}+i \pi \mathrm {csgn}\left (i \ln \relax (x )^{2}\right )^{3}+2 \ln \relax (3)+2 \ln \relax (5)-4 \ln \left (\ln \relax (x )\right )}{2 x}\) | \(313\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 41, normalized size = 1.71 \begin {gather*} \frac {\log \relax (5) + \log \relax (3) - 2 \, \log \relax (2) + \log \left (4 \, {\left (x e^{6} + 16 \, e^{6}\right )} \log \relax (x)^{2} - 3 \, x^{2}\right ) - 2 \, \log \left (\log \relax (x)\right ) - 6}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.78, size = 32, normalized size = 1.33 \begin {gather*} \frac {\ln \left (-\frac {\frac {45\,x^2}{4}-\frac {{\mathrm {e}}^6\,{\ln \relax (x)}^2\,\left (60\,x+960\right )}{4}}{{\ln \relax (x)}^2}\right )-6}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.62, size = 32, normalized size = 1.33 \begin {gather*} \frac {\log {\left (\frac {- \frac {45 x^{2}}{4} + \frac {\left (60 x + 960\right ) e^{6} \log {\relax (x )}^{2}}{4}}{e^{6} \log {\relax (x )}^{2}} \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________