Optimal. Leaf size=26 \[ \frac {e^x x^2}{\log ^2\left (e^x \left (-x+x^4 \log ^2(5)\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 8.21, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (2 x+2 x^2+\left (-8 x^4-2 x^5\right ) \log ^2(5)\right )+e^x \left (-2 x-x^2+\left (2 x^4+x^5\right ) \log ^2(5)\right ) \log \left (e^x \left (-x+x^4 \log ^2(5)\right )\right )}{\left (-1+x^3 \log ^2(5)\right ) \log ^3\left (e^x \left (-x+x^4 \log ^2(5)\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2 e^x x}{\left (-1+x^3 \log ^2(5)\right ) \log ^3\left (e^x x \left (-1+x^3 \log ^2(5)\right )\right )}+\frac {2 e^x x^2}{\left (-1+x^3 \log ^2(5)\right ) \log ^3\left (e^x x \left (-1+x^3 \log ^2(5)\right )\right )}-\frac {8 e^x x^4 \log ^2(5)}{\left (-1+x^3 \log ^2(5)\right ) \log ^3\left (e^x x \left (-1+x^3 \log ^2(5)\right )\right )}-\frac {2 e^x x^5 \log ^2(5)}{\left (-1+x^3 \log ^2(5)\right ) \log ^3\left (e^x x \left (-1+x^3 \log ^2(5)\right )\right )}-\frac {2 e^x x}{\left (-1+x^3 \log ^2(5)\right ) \log ^2\left (e^x x \left (-1+x^3 \log ^2(5)\right )\right )}-\frac {e^x x^2}{\left (-1+x^3 \log ^2(5)\right ) \log ^2\left (e^x x \left (-1+x^3 \log ^2(5)\right )\right )}+\frac {2 e^x x^4 \log ^2(5)}{\left (-1+x^3 \log ^2(5)\right ) \log ^2\left (e^x x \left (-1+x^3 \log ^2(5)\right )\right )}+\frac {e^x x^5 \log ^2(5)}{\left (-1+x^3 \log ^2(5)\right ) \log ^2\left (e^x x \left (-1+x^3 \log ^2(5)\right )\right )}\right ) \, dx\\ &=2 \int \frac {e^x x}{\left (-1+x^3 \log ^2(5)\right ) \log ^3\left (e^x x \left (-1+x^3 \log ^2(5)\right )\right )} \, dx+2 \int \frac {e^x x^2}{\left (-1+x^3 \log ^2(5)\right ) \log ^3\left (e^x x \left (-1+x^3 \log ^2(5)\right )\right )} \, dx-2 \int \frac {e^x x}{\left (-1+x^3 \log ^2(5)\right ) \log ^2\left (e^x x \left (-1+x^3 \log ^2(5)\right )\right )} \, dx+\log ^2(5) \int \frac {e^x x^5}{\left (-1+x^3 \log ^2(5)\right ) \log ^2\left (e^x x \left (-1+x^3 \log ^2(5)\right )\right )} \, dx-\left (2 \log ^2(5)\right ) \int \frac {e^x x^5}{\left (-1+x^3 \log ^2(5)\right ) \log ^3\left (e^x x \left (-1+x^3 \log ^2(5)\right )\right )} \, dx+\left (2 \log ^2(5)\right ) \int \frac {e^x x^4}{\left (-1+x^3 \log ^2(5)\right ) \log ^2\left (e^x x \left (-1+x^3 \log ^2(5)\right )\right )} \, dx-\left (8 \log ^2(5)\right ) \int \frac {e^x x^4}{\left (-1+x^3 \log ^2(5)\right ) \log ^3\left (e^x x \left (-1+x^3 \log ^2(5)\right )\right )} \, dx-\int \frac {e^x x^2}{\left (-1+x^3 \log ^2(5)\right ) \log ^2\left (e^x x \left (-1+x^3 \log ^2(5)\right )\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 25, normalized size = 0.96 \begin {gather*} \frac {e^x x^2}{\log ^2\left (e^x x \left (-1+x^3 \log ^2(5)\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.22, size = 24, normalized size = 0.92 \begin {gather*} \frac {x^{2} e^{x}}{\log \left ({\left (x^{4} \log \relax (5)^{2} - x\right )} e^{x}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 43, normalized size = 1.65 \begin {gather*} \frac {x^{2} e^{x}}{x^{2} + 2 \, x \log \left (x^{4} \log \relax (5)^{2} - x\right ) + \log \left (x^{4} \log \relax (5)^{2} - x\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.56, size = 282, normalized size = 10.85
method | result | size |
risch | \(-\frac {4 x^{2} {\mathrm e}^{x}}{\left (\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{x} \left (x^{3} \ln \relax (5)^{2}-1\right )\right ) \mathrm {csgn}\left (i x \left (x^{3} \ln \relax (5)^{2}-1\right ) {\mathrm e}^{x}\right )-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left (x^{3} \ln \relax (5)^{2}-1\right ) {\mathrm e}^{x}\right )^{2}+\pi \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i \left (x^{3} \ln \relax (5)^{2}-1\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{x} \left (x^{3} \ln \relax (5)^{2}-1\right )\right )-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{x} \left (x^{3} \ln \relax (5)^{2}-1\right )\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (x^{3} \ln \relax (5)^{2}-1\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{x} \left (x^{3} \ln \relax (5)^{2}-1\right )\right )^{2}+\pi \mathrm {csgn}\left (i {\mathrm e}^{x} \left (x^{3} \ln \relax (5)^{2}-1\right )\right )^{3}-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{x} \left (x^{3} \ln \relax (5)^{2}-1\right )\right ) \mathrm {csgn}\left (i x \left (x^{3} \ln \relax (5)^{2}-1\right ) {\mathrm e}^{x}\right )^{2}+\pi \mathrm {csgn}\left (i x \left (x^{3} \ln \relax (5)^{2}-1\right ) {\mathrm e}^{x}\right )^{3}+2 i \ln \relax (x )+2 i \ln \left (x^{3} \ln \relax (5)^{2}-1\right )+2 i \ln \left ({\mathrm e}^{x}\right )\right )^{2}}\) | \(282\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.54, size = 51, normalized size = 1.96 \begin {gather*} \frac {x^{2} e^{x}}{x^{2} + 2 \, {\left (x + \log \relax (x)\right )} \log \left (x^{3} \log \relax (5)^{2} - 1\right ) + \log \left (x^{3} \log \relax (5)^{2} - 1\right )^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.32, size = 24, normalized size = 0.92 \begin {gather*} \frac {x^2\,{\mathrm {e}}^x}{{\ln \left (-{\mathrm {e}}^x\,\left (x-x^4\,{\ln \relax (5)}^2\right )\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 22, normalized size = 0.85 \begin {gather*} \frac {x^{2} e^{x}}{\log {\left (\left (x^{4} \log {\relax (5 )}^{2} - x\right ) e^{x} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________