Optimal. Leaf size=26 \[ -e^{x^2}-x (5+x)^4+\log (2+2 x-\log (5)) \]
________________________________________________________________________________________
Rubi [B] time = 0.57, antiderivative size = 367, normalized size of antiderivative = 14.12, number of steps used = 15, number of rules used = 4, integrand size = 78, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.051, Rules used = {6742, 2209, 43, 77} \begin {gather*} -x^5-\frac {85 x^4}{4}+\frac {5}{8} x^4 (2-\log (5))-\frac {530 x^3}{3}-\frac {5}{12} x^3 (2-\log (5))^2+\frac {85}{6} x^3 (2-\log (5))-725 x^2-e^{x^2}+\frac {5}{16} x^2 (2-\log (5))^3-\frac {85}{8} x^2 (2-\log (5))^2+\frac {265}{2} x^2 (2-\log (5))-1625 x+\frac {5}{16} x \log ^2(5) (8+\log (5))^2+\frac {5}{32} \log ^2(5) (8+\log (5))^3 \log (2 x+2-\log (5))+\frac {5}{16} (x+5)^2 \log ^2(5) (8+\log (5))+\frac {5}{12} (x+5)^3 \log ^2(5)-\frac {5}{16} x (2-\log (5))^4+\frac {85}{8} x (2-\log (5))^3-\frac {265}{2} x (2-\log (5))^2+725 x (2-\log (5))+\frac {5}{32} (2-\log (5))^5 \log (2 x+2-\log (5))-\frac {85}{16} (2-\log (5))^4 \log (2 x+2-\log (5))+\frac {265}{4} (2-\log (5))^3 \log (2 x+2-\log (5))-\frac {725}{2} (2-\log (5))^2 \log (2 x+2-\log (5))+\frac {1625}{2} (2-\log (5)) \log (2 x+2-\log (5))-624 \log (2 x+2-\log (5))+\frac {5}{8} (x+5)^4 \log (5) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 43
Rule 77
Rule 2209
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-2 e^{x^2} x-\frac {1248}{2+2 x-\log (5)}-\frac {3250 x}{2+2 x-\log (5)}-\frac {2900 x^2}{2+2 x-\log (5)}-\frac {1060 x^3}{2+2 x-\log (5)}-\frac {170 x^4}{2+2 x-\log (5)}-\frac {10 x^5}{2+2 x-\log (5)}+\frac {5 (1+x) (5+x)^3 \log (5)}{2+2 x-\log (5)}\right ) \, dx\\ &=-624 \log (2+2 x-\log (5))-2 \int e^{x^2} x \, dx-10 \int \frac {x^5}{2+2 x-\log (5)} \, dx-170 \int \frac {x^4}{2+2 x-\log (5)} \, dx-1060 \int \frac {x^3}{2+2 x-\log (5)} \, dx-2900 \int \frac {x^2}{2+2 x-\log (5)} \, dx-3250 \int \frac {x}{2+2 x-\log (5)} \, dx+(5 \log (5)) \int \frac {(1+x) (5+x)^3}{2+2 x-\log (5)} \, dx\\ &=-e^{x^2}-624 \log (2+2 x-\log (5))-10 \int \left (\frac {x^4}{2}+\frac {1}{4} x^3 (-2+\log (5))+\frac {1}{8} x^2 (-2+\log (5))^2+\frac {1}{16} x (-2+\log (5))^3+\frac {1}{32} (-2+\log (5))^4+\frac {(-2+\log (5))^5}{32 (2+2 x-\log (5))}\right ) \, dx-170 \int \left (\frac {x^3}{2}+\frac {1}{4} x^2 (-2+\log (5))+\frac {1}{8} x (-2+\log (5))^2+\frac {1}{16} (-2+\log (5))^3+\frac {(-2+\log (5))^4}{16 (2+2 x-\log (5))}\right ) \, dx-1060 \int \left (\frac {x^2}{2}+\frac {1}{4} x (-2+\log (5))+\frac {1}{8} (-2+\log (5))^2+\frac {(-2+\log (5))^3}{8 (2+2 x-\log (5))}\right ) \, dx-2900 \int \left (\frac {x}{2}+\frac {1}{4} (-2+\log (5))+\frac {(-2+\log (5))^2}{4 (2+2 x-\log (5))}\right ) \, dx-3250 \int \left (\frac {1}{2}+\frac {-2+\log (5)}{2 (2+2 x-\log (5))}\right ) \, dx+(5 \log (5)) \int \left (\frac {1}{2} (5+x)^3+\frac {1}{4} (5+x)^2 \log (5)+\frac {1}{8} (5+x) \log (5) (8+\log (5))+\frac {1}{16} \log (5) (8+\log (5))^2+\frac {\log (5) (8+\log (5))^3}{16 (2+2 x-\log (5))}\right ) \, dx\\ &=-e^{x^2}-1625 x-725 x^2-\frac {530 x^3}{3}-\frac {85 x^4}{4}-x^5+725 x (2-\log (5))+\frac {265}{2} x^2 (2-\log (5))+\frac {85}{6} x^3 (2-\log (5))+\frac {5}{8} x^4 (2-\log (5))-\frac {265}{2} x (2-\log (5))^2-\frac {85}{8} x^2 (2-\log (5))^2-\frac {5}{12} x^3 (2-\log (5))^2+\frac {85}{8} x (2-\log (5))^3+\frac {5}{16} x^2 (2-\log (5))^3-\frac {5}{16} x (2-\log (5))^4+\frac {5}{8} (5+x)^4 \log (5)+\frac {5}{12} (5+x)^3 \log ^2(5)+\frac {5}{16} (5+x)^2 \log ^2(5) (8+\log (5))+\frac {5}{16} x \log ^2(5) (8+\log (5))^2-624 \log (2+2 x-\log (5))+\frac {1625}{2} (2-\log (5)) \log (2+2 x-\log (5))-\frac {725}{2} (2-\log (5))^2 \log (2+2 x-\log (5))+\frac {265}{4} (2-\log (5))^3 \log (2+2 x-\log (5))-\frac {85}{16} (2-\log (5))^4 \log (2+2 x-\log (5))+\frac {5}{32} (2-\log (5))^5 \log (2+2 x-\log (5))+\frac {5}{32} \log ^2(5) (8+\log (5))^3 \log (2+2 x-\log (5))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.13, size = 128, normalized size = 4.92 \begin {gather*} -e^{x^2}-\frac {1}{2} x \left (300 x^2+40 x^3+2 x^4+5 x \left (200+4 \log ^2(5)-\log (5) \log (625)\right )+5 \left (250+4 \log ^3(5)+\log ^2(625)-\log ^2(5) (16+\log (625))\right )\right )-\frac {1}{4} \left (-4+20 \log ^4(5)+540 \log (625)-5 \log ^3(5) (24+\log (625))+10 \log ^2(5) (124+3 \log (625))-10 \log (5) (216+31 \log (625))\right ) \log (2+2 x-\log (5)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.67, size = 40, normalized size = 1.54 \begin {gather*} -x^{5} - 20 \, x^{4} - 150 \, x^{3} - 500 \, x^{2} - 625 \, x - e^{\left (x^{2}\right )} + \log \left (2 \, x - \log \relax (5) + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 40, normalized size = 1.54 \begin {gather*} -x^{5} - 20 \, x^{4} - 150 \, x^{3} - 500 \, x^{2} - 625 \, x - e^{\left (x^{2}\right )} + \log \left (2 \, x - \log \relax (5) + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.41, size = 39, normalized size = 1.50
method | result | size |
norman | \(-625 x -500 x^{2}-150 x^{3}-20 x^{4}-x^{5}-{\mathrm e}^{x^{2}}+\ln \left (\ln \relax (5)-2 x -2\right )\) | \(39\) |
risch | \(-x^{5}-20 x^{4}-150 x^{3}-500 x^{2}-625 x +\ln \left (2-\ln \relax (5)+2 x \right )-{\mathrm e}^{x^{2}}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 546, normalized size = 21.00 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 40, normalized size = 1.54 \begin {gather*} \ln \left (2\,x-\ln \relax (5)+2\right )-{\mathrm {e}}^{x^2}-625\,x-500\,x^2-150\,x^3-20\,x^4-x^5 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 36, normalized size = 1.38 \begin {gather*} - x^{5} - 20 x^{4} - 150 x^{3} - 500 x^{2} - 625 x - e^{x^{2}} + \log {\left (2 x - \log {\relax (5 )} + 2 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________