Optimal. Leaf size=24 \[ e^{\frac {1}{16} \left (e^x+\frac {x}{4}\right ) x (4+\log (1-x))} \]
________________________________________________________________________________________
Rubi [F] time = 7.61, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {1}{64} \left (16 e^x x+4 x^2+\left (4 e^x x+x^2\right ) \log (1-x)\right )\right ) \left (-8 x+9 x^2+e^x \left (-16+4 x+16 x^2\right )+\left (-2 x+2 x^2+e^x \left (-4+4 x^2\right )\right ) \log (1-x)\right )}{-64+64 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))} \left (8 x-9 x^2-e^x \left (-16+4 x+16 x^2\right )-\left (-2 x+2 x^2+e^x \left (-4+4 x^2\right )\right ) \log (1-x)\right )}{64-64 x} \, dx\\ &=\int \left (\frac {e^{\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))} x (-8+9 x-2 \log (1-x)+2 x \log (1-x))}{64 (-1+x)}+\frac {e^{x+\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))} \left (-4+x+4 x^2-\log (1-x)+x^2 \log (1-x)\right )}{16 (-1+x)}\right ) \, dx\\ &=\frac {1}{64} \int \frac {e^{\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))} x (-8+9 x-2 \log (1-x)+2 x \log (1-x))}{-1+x} \, dx+\frac {1}{16} \int \frac {e^{x+\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))} \left (-4+x+4 x^2-\log (1-x)+x^2 \log (1-x)\right )}{-1+x} \, dx\\ &=\frac {1}{64} \int \left (\frac {e^{\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))} x (-8+9 x)}{-1+x}+2 e^{\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))} x \log (1-x)\right ) \, dx+\frac {1}{16} \int \left (\frac {e^{x+\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))} \left (-4+x+4 x^2\right )}{-1+x}+e^{x+\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))} (1+x) \log (1-x)\right ) \, dx\\ &=\frac {1}{64} \int \frac {e^{\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))} x (-8+9 x)}{-1+x} \, dx+\frac {1}{32} \int e^{\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))} x \log (1-x) \, dx+\frac {1}{16} \int \frac {e^{x+\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))} \left (-4+x+4 x^2\right )}{-1+x} \, dx+\frac {1}{16} \int e^{x+\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))} (1+x) \log (1-x) \, dx\\ &=\frac {1}{64} \int \left (e^{\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))}+\frac {e^{\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))}}{-1+x}+9 e^{\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))} x\right ) \, dx+\frac {1}{32} \int e^{\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))} x \log (1-x) \, dx+\frac {1}{16} \int \left (5 e^{x+\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))}+\frac {e^{x+\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))}}{-1+x}+4 e^{x+\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))} x\right ) \, dx+\frac {1}{16} \int \left (e^{x+\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))} \log (1-x)+e^{x+\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))} x \log (1-x)\right ) \, dx\\ &=\frac {1}{64} \int e^{\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))} \, dx+\frac {1}{64} \int \frac {e^{\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))}}{-1+x} \, dx+\frac {1}{32} \int e^{\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))} x \log (1-x) \, dx+\frac {1}{16} \int \frac {e^{x+\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))}}{-1+x} \, dx+\frac {1}{16} \int e^{x+\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))} \log (1-x) \, dx+\frac {1}{16} \int e^{x+\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))} x \log (1-x) \, dx+\frac {9}{64} \int e^{\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))} x \, dx+\frac {1}{4} \int e^{x+\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))} x \, dx+\frac {5}{16} \int e^{x+\frac {1}{64} x \left (4 e^x+x\right ) (4+\log (1-x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 33, normalized size = 1.38 \begin {gather*} e^{\frac {1}{16} x \left (4 e^x+x\right )} (1-x)^{\frac {1}{64} x \left (4 e^x+x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 29, normalized size = 1.21 \begin {gather*} e^{\left (\frac {1}{16} \, x^{2} + \frac {1}{4} \, x e^{x} + \frac {1}{64} \, {\left (x^{2} + 4 \, x e^{x}\right )} \log \left (-x + 1\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 34, normalized size = 1.42 \begin {gather*} e^{\left (\frac {1}{64} \, x^{2} \log \left (-x + 1\right ) + \frac {1}{16} \, x e^{x} \log \left (-x + 1\right ) + \frac {1}{16} \, x^{2} + \frac {1}{4} \, x e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.39, size = 27, normalized size = 1.12
method | result | size |
risch | \(\left (1-x \right )^{\frac {x \left (4 \,{\mathrm e}^{x}+x \right )}{64}} {\mathrm e}^{\frac {x \left (4 \,{\mathrm e}^{x}+x \right )}{16}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 34, normalized size = 1.42 \begin {gather*} e^{\left (\frac {1}{64} \, x^{2} \log \left (-x + 1\right ) + \frac {1}{16} \, x e^{x} \log \left (-x + 1\right ) + \frac {1}{16} \, x^{2} + \frac {1}{4} \, x e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.84, size = 30, normalized size = 1.25 \begin {gather*} {\mathrm {e}}^{\frac {x\,{\mathrm {e}}^x}{4}+\frac {x^2}{16}}\,{\left (1-x\right )}^{\frac {x\,{\mathrm {e}}^x}{16}+\frac {x^2}{64}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.73, size = 29, normalized size = 1.21 \begin {gather*} e^{\frac {x^{2}}{16} + \frac {x e^{x}}{4} + \left (\frac {x^{2}}{64} + \frac {x e^{x}}{16}\right ) \log {\left (1 - x \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________