Optimal. Leaf size=25 \[ 2+\frac {3+e^{3+x (3+x)^2}-x}{x}-3 x \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 50, normalized size of antiderivative = 2.00, number of steps used = 5, number of rules used = 2, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {14, 2288} \begin {gather*} \frac {e^{x^3+6 x^2+9 x+3} \left (x^3+4 x^2+3 x\right )}{\left (x^2+4 x+3\right ) x^2}-3 x+\frac {3}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {3 \left (1+x^2\right )}{x^2}+\frac {e^{3+9 x+6 x^2+x^3} \left (-1+9 x+12 x^2+3 x^3\right )}{x^2}\right ) \, dx\\ &=-\left (3 \int \frac {1+x^2}{x^2} \, dx\right )+\int \frac {e^{3+9 x+6 x^2+x^3} \left (-1+9 x+12 x^2+3 x^3\right )}{x^2} \, dx\\ &=\frac {e^{3+9 x+6 x^2+x^3} \left (3 x+4 x^2+x^3\right )}{x^2 \left (3+4 x+x^2\right )}-3 \int \left (1+\frac {1}{x^2}\right ) \, dx\\ &=\frac {3}{x}-3 x+\frac {e^{3+9 x+6 x^2+x^3} \left (3 x+4 x^2+x^3\right )}{x^2 \left (3+4 x+x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 26, normalized size = 1.04 \begin {gather*} \frac {3+e^{3+9 x+6 x^2+x^3}-3 x^2}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 28, normalized size = 1.12 \begin {gather*} -\frac {3 \, x^{2} - e^{\left (x^{3} + 6 \, x^{2} + 9 \, x + 3\right )} - 3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 28, normalized size = 1.12 \begin {gather*} -\frac {3 \, x^{2} - e^{\left (x^{3} + 6 \, x^{2} + 9 \, x + 3\right )} - 3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 26, normalized size = 1.04
method | result | size |
norman | \(\frac {3-3 x^{2}+{\mathrm e}^{x^{3}+6 x^{2}+9 x +3}}{x}\) | \(26\) |
risch | \(\frac {3}{x}-3 x +\frac {{\mathrm e}^{x^{3}+6 x^{2}+9 x +3}}{x}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 27, normalized size = 1.08 \begin {gather*} -3 \, x + \frac {e^{\left (x^{3} + 6 \, x^{2} + 9 \, x + 3\right )}}{x} + \frac {3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.31, size = 29, normalized size = 1.16 \begin {gather*} \frac {3}{x}-3\,x+\frac {{\mathrm {e}}^{9\,x}\,{\mathrm {e}}^{x^3}\,{\mathrm {e}}^3\,{\mathrm {e}}^{6\,x^2}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 22, normalized size = 0.88 \begin {gather*} - 3 x + \frac {e^{x^{3} + 6 x^{2} + 9 x + 3}}{x} + \frac {3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________