Optimal. Leaf size=21 \[ \log \left (\frac {e^{-6-x}-x}{\log \left (196 x^2\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.86, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 e^{-6-x}+2 x+\left (-x-e^{-6-x} x\right ) \log \left (196 x^2\right )}{\left (e^{-6-x} x-x^2\right ) \log \left (196 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1+x}{x \left (-1+e^{6+x} x\right )}+\frac {-2+\log \left (196 x^2\right )}{x \log \left (196 x^2\right )}\right ) \, dx\\ &=\int \frac {1+x}{x \left (-1+e^{6+x} x\right )} \, dx+\int \frac {-2+\log \left (196 x^2\right )}{x \log \left (196 x^2\right )} \, dx\\ &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {-2+x}{x} \, dx,x,\log \left (196 x^2\right )\right )+\int \left (\frac {1}{-1+e^{6+x} x}+\frac {1}{x \left (-1+e^{6+x} x\right )}\right ) \, dx\\ &=\frac {1}{2} \operatorname {Subst}\left (\int \left (1-\frac {2}{x}\right ) \, dx,x,\log \left (196 x^2\right )\right )+\int \frac {1}{-1+e^{6+x} x} \, dx+\int \frac {1}{x \left (-1+e^{6+x} x\right )} \, dx\\ &=\log (x)-\log \left (\log \left (196 x^2\right )\right )+\int \frac {1}{-1+e^{6+x} x} \, dx+\int \frac {1}{x \left (-1+e^{6+x} x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 24, normalized size = 1.14 \begin {gather*} -x+\log \left (1-e^{6+x} x\right )-\log \left (\log \left (196 x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.16, size = 21, normalized size = 1.00 \begin {gather*} \log \left (-x + e^{\left (-x - 6\right )}\right ) - \log \left (\log \left (196 \, x^{2}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 21, normalized size = 1.00 \begin {gather*} \log \left (-x e^{6} + e^{\left (-x\right )}\right ) - \log \left (\log \left (196 \, x^{2}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 22, normalized size = 1.05
method | result | size |
default | \(-\ln \left (\ln \left (196 x^{2}\right )\right )+\ln \left (x -{\mathrm e}^{-x -6}\right )\) | \(22\) |
norman | \(-\ln \left (\ln \left (196 x^{2}\right )\right )+\ln \left (x -{\mathrm e}^{-x -6}\right )\) | \(22\) |
risch | \(6+\ln \left ({\mathrm e}^{-x -6}-x \right )-\ln \left (\ln \relax (x )-\frac {i \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 i \ln \relax (2)+4 i \ln \relax (7)\right )}{4}\right )\) | \(78\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 31, normalized size = 1.48 \begin {gather*} -x + \log \relax (x) + \log \left (\frac {{\left (x e^{\left (x + 6\right )} - 1\right )} e^{\left (-6\right )}}{x}\right ) - \log \left (\log \relax (7) + \log \relax (2) + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.39, size = 21, normalized size = 1.00 \begin {gather*} \ln \left (x-{\mathrm {e}}^{-x-6}\right )-\ln \left (\ln \left (196\,x^2\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 17, normalized size = 0.81 \begin {gather*} \log {\left (- x + e^{- x - 6} \right )} - \log {\left (\log {\left (196 x^{2} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________