Optimal. Leaf size=31 \[ \frac {1}{2} x^2 \left (9-e^4-e^{e^{x/4}}-\log (4)\right ) \log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.22, antiderivative size = 39, normalized size of antiderivative = 1.26, number of steps used = 12, number of rules used = 6, integrand size = 70, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {6, 12, 2304, 6742, 2288, 2554} \begin {gather*} \frac {1}{2} x^2 \left (9-e^4-\log (4)\right ) \log (x)-\frac {1}{2} e^{e^{x/4}} x^2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2288
Rule 2304
Rule 2554
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1}{8} \left (\left (36-4 e^4\right ) x-4 x \log (4)+\left (72 x-8 e^4 x-8 x \log (4)\right ) \log (x)+e^{e^{x/4}} \left (-4 x+\left (-8 x-e^{x/4} x^2\right ) \log (x)\right )\right ) \, dx\\ &=\int \frac {1}{8} \left (x \left (36-4 e^4-4 \log (4)\right )+\left (72 x-8 e^4 x-8 x \log (4)\right ) \log (x)+e^{e^{x/4}} \left (-4 x+\left (-8 x-e^{x/4} x^2\right ) \log (x)\right )\right ) \, dx\\ &=\frac {1}{8} \int \left (x \left (36-4 e^4-4 \log (4)\right )+\left (72 x-8 e^4 x-8 x \log (4)\right ) \log (x)+e^{e^{x/4}} \left (-4 x+\left (-8 x-e^{x/4} x^2\right ) \log (x)\right )\right ) \, dx\\ &=\frac {1}{4} x^2 \left (9-e^4-\log (4)\right )+\frac {1}{8} \int \left (72 x-8 e^4 x-8 x \log (4)\right ) \log (x) \, dx+\frac {1}{8} \int e^{e^{x/4}} \left (-4 x+\left (-8 x-e^{x/4} x^2\right ) \log (x)\right ) \, dx\\ &=\frac {1}{4} x^2 \left (9-e^4-\log (4)\right )+\frac {1}{8} \int \left (\left (72-8 e^4\right ) x-8 x \log (4)\right ) \log (x) \, dx+\frac {1}{8} \int \left (-4 e^{e^{x/4}} x-e^{e^{x/4}} x \left (8+e^{x/4} x\right ) \log (x)\right ) \, dx\\ &=\frac {1}{4} x^2 \left (9-e^4-\log (4)\right )-\frac {1}{8} \int e^{e^{x/4}} x \left (8+e^{x/4} x\right ) \log (x) \, dx+\frac {1}{8} \int x \left (72-8 e^4-8 \log (4)\right ) \log (x) \, dx-\frac {1}{2} \int e^{e^{x/4}} x \, dx\\ &=\frac {1}{4} x^2 \left (9-e^4-\log (4)\right )-\frac {1}{2} e^{e^{x/4}} x^2 \log (x)+\frac {1}{8} \int 4 e^{e^{x/4}} x \, dx-\frac {1}{2} \int e^{e^{x/4}} x \, dx+\left (9-e^4-\log (4)\right ) \int x \log (x) \, dx\\ &=-\frac {1}{2} e^{e^{x/4}} x^2 \log (x)+\frac {1}{2} x^2 \left (9-e^4-\log (4)\right ) \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 25, normalized size = 0.81 \begin {gather*} -\frac {1}{2} x^2 \left (-9+e^4+e^{e^{x/4}}+\log (4)\right ) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 36, normalized size = 1.16 \begin {gather*} -\frac {1}{2} \, x^{2} e^{\left (e^{\left (\frac {1}{4} \, x\right )}\right )} \log \relax (x) - \frac {1}{2} \, {\left (x^{2} e^{4} + 2 \, x^{2} \log \relax (2) - 9 \, x^{2}\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 38, normalized size = 1.23 \begin {gather*} -\frac {1}{2} \, x^{2} e^{4} \log \relax (x) - \frac {1}{2} \, x^{2} e^{\left (e^{\left (\frac {1}{4} \, x\right )}\right )} \log \relax (x) - x^{2} \log \relax (2) \log \relax (x) + \frac {9}{2} \, x^{2} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 39, normalized size = 1.26
method | result | size |
risch | \(-\frac {\ln \relax (x ) x^{2} {\mathrm e}^{{\mathrm e}^{\frac {x}{4}}}}{2}-x^{2} \ln \relax (2) \ln \relax (x )-\frac {x^{2} {\mathrm e}^{4} \ln \relax (x )}{2}+\frac {9 x^{2} \ln \relax (x )}{2}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.38, size = 68, normalized size = 2.19 \begin {gather*} -\frac {1}{2} \, x^{2} e^{\left (e^{\left (\frac {1}{4} \, x\right )}\right )} \log \relax (x) + \frac {1}{4} \, x^{2} {\left (e^{4} + 2 \, \log \relax (2) - 9\right )} - \frac {1}{4} \, x^{2} e^{4} - \frac {1}{2} \, x^{2} \log \relax (2) + \frac {9}{4} \, x^{2} - \frac {1}{2} \, {\left (x^{2} e^{4} + 2 \, x^{2} \log \relax (2) - 9 \, x^{2}\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.52, size = 22, normalized size = 0.71 \begin {gather*} -\frac {x^2\,\ln \relax (x)\,\left (2\,{\mathrm {e}}^4+\ln \left (16\right )+2\,{\mathrm {e}}^{{\mathrm {e}}^{x/4}}-18\right )}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 6.08, size = 39, normalized size = 1.26 \begin {gather*} - \frac {x^{2} e^{e^{\frac {x}{4}}} \log {\relax (x )}}{2} + \left (- \frac {x^{2} e^{4}}{2} - x^{2} \log {\relax (2 )} + \frac {9 x^{2}}{2}\right ) \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________