Optimal. Leaf size=30 \[ e^{\left (e^{e^x-x}-x\right ) \left (-4+e^{4 x}-\frac {x}{7}\right )+x} \]
________________________________________________________________________________________
Rubi [F] time = 9.34, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{7} \exp \left (\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right ) \left (35+e^{4 x} (-7-28 x)+2 x+e^{e^x-x} \left (27+e^{4 x} \left (21+7 e^x\right )+e^x (-28-x)+x\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{7} \int \exp \left (\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right ) \left (35+e^{4 x} (-7-28 x)+2 x+e^{e^x-x} \left (27+e^{4 x} \left (21+7 e^x\right )+e^x (-28-x)+x\right )\right ) \, dx\\ &=\frac {1}{7} \int \left (35 \exp \left (\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right )+2 \exp \left (\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right ) x-7 \exp \left (4 x+\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right ) (1+4 x)+\exp \left (e^x-x+\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right ) \left (27-28 e^x+21 e^{4 x}+7 e^{5 x}+x-e^x x\right )\right ) \, dx\\ &=\frac {1}{7} \int \exp \left (e^x-x+\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right ) \left (27-28 e^x+21 e^{4 x}+7 e^{5 x}+x-e^x x\right ) \, dx+\frac {2}{7} \int \exp \left (\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right ) x \, dx+5 \int \exp \left (\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right ) \, dx-\int \exp \left (4 x+\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right ) (1+4 x) \, dx\\ &=\frac {1}{7} \int \left (-28 \exp \left (e^x+\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right )+27 \exp \left (e^x-x+\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right )+21 \exp \left (e^x+3 x+\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right )+7 \exp \left (e^x+4 x+\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right )-\exp \left (e^x+\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right ) x+\exp \left (e^x-x+\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right ) x\right ) \, dx+\frac {2}{7} \int \exp \left (\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right ) x \, dx+5 \int \exp \left (\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right ) \, dx-\int \left (\exp \left (4 x+\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right )+4 \exp \left (4 x+\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right ) x\right ) \, dx\\ &=-\left (\frac {1}{7} \int \exp \left (e^x+\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right ) x \, dx\right )+\frac {1}{7} \int \exp \left (e^x-x+\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right ) x \, dx+\frac {2}{7} \int \exp \left (\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right ) x \, dx+3 \int \exp \left (e^x+3 x+\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right ) \, dx+\frac {27}{7} \int \exp \left (e^x-x+\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right ) \, dx-4 \int \exp \left (e^x+\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right ) \, dx-4 \int \exp \left (4 x+\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right ) x \, dx+5 \int \exp \left (\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right ) \, dx-\int \exp \left (4 x+\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right ) \, dx+\int \exp \left (e^x+4 x+\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 43, normalized size = 1.43 \begin {gather*} e^{\frac {1}{7} \left (e^{e^x-x} \left (-28+7 e^{4 x}-x\right )+35 x-7 e^{4 x} x+x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 35, normalized size = 1.17 \begin {gather*} e^{\left (\frac {1}{7} \, x^{2} - x e^{\left (4 \, x\right )} - \frac {1}{7} \, {\left (x - 7 \, e^{\left (4 \, x\right )} + 28\right )} e^{\left (-x + e^{x}\right )} + 5 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.40, size = 43, normalized size = 1.43 \begin {gather*} e^{\left (\frac {1}{7} \, x^{2} - x e^{\left (4 \, x\right )} - \frac {1}{7} \, x e^{\left (-x + e^{x}\right )} + 5 \, x + e^{\left (3 \, x + e^{x}\right )} - 4 \, e^{\left (-x + e^{x}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 44, normalized size = 1.47
method | result | size |
risch | \({\mathrm e}^{{\mathrm e}^{3 x +{\mathrm e}^{x}}-\frac {{\mathrm e}^{{\mathrm e}^{x}-x} x}{7}-4 \,{\mathrm e}^{{\mathrm e}^{x}-x}-x \,{\mathrm e}^{4 x}+\frac {x^{2}}{7}+5 x}\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.74, size = 43, normalized size = 1.43 \begin {gather*} e^{\left (\frac {1}{7} \, x^{2} - x e^{\left (4 \, x\right )} - \frac {1}{7} \, x e^{\left (-x + e^{x}\right )} + 5 \, x + e^{\left (3 \, x + e^{x}\right )} - 4 \, e^{\left (-x + e^{x}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.48, size = 49, normalized size = 1.63 \begin {gather*} {\mathrm {e}}^{5\,x}\,{\mathrm {e}}^{{\mathrm {e}}^{3\,x}\,{\mathrm {e}}^{{\mathrm {e}}^x}}\,{\mathrm {e}}^{-4\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{{\mathrm {e}}^x}}\,{\mathrm {e}}^{-x\,{\mathrm {e}}^{4\,x}}\,{\mathrm {e}}^{\frac {x^2}{7}}\,{\mathrm {e}}^{-\frac {x\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{{\mathrm {e}}^x}}{7}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.81, size = 32, normalized size = 1.07 \begin {gather*} e^{\frac {x^{2}}{7} - x e^{4 x} + 5 x + \left (- \frac {x}{7} + e^{4 x} - 4\right ) e^{- x + e^{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________