Optimal. Leaf size=22 \[ x-\frac {1}{5} \left (2-\frac {5}{4} e^{\frac {1}{x^2}-2 x}\right ) x \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 34, normalized size of antiderivative = 1.55, number of steps used = 4, number of rules used = 3, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.070, Rules used = {12, 14, 2288} \begin {gather*} \frac {e^{\frac {1}{x^2}-2 x} \left (x^3+1\right )}{4 \left (\frac {1}{x^3}+1\right ) x^2}+\frac {3 x}{5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{20} \int \frac {12 x^2+e^{\frac {1-2 x^3+x^2 \log (5)}{x^2}} \left (-2+x^2-2 x^3\right )}{x^2} \, dx\\ &=\frac {1}{20} \int \left (12-\frac {5 e^{\frac {1}{x^2}-2 x} \left (2-x^2+2 x^3\right )}{x^2}\right ) \, dx\\ &=\frac {3 x}{5}-\frac {1}{4} \int \frac {e^{\frac {1}{x^2}-2 x} \left (2-x^2+2 x^3\right )}{x^2} \, dx\\ &=\frac {3 x}{5}+\frac {e^{\frac {1}{x^2}-2 x} \left (1+x^3\right )}{4 \left (1+\frac {1}{x^3}\right ) x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 19, normalized size = 0.86 \begin {gather*} \left (\frac {3}{5}+\frac {1}{4} e^{\frac {1}{x^2}-2 x}\right ) x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 27, normalized size = 1.23 \begin {gather*} \frac {1}{20} \, x e^{\left (-\frac {2 \, x^{3} - x^{2} \log \relax (5) - 1}{x^{2}}\right )} + \frac {3}{5} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 20, normalized size = 0.91 \begin {gather*} \frac {1}{4} \, x e^{\left (-\frac {2 \, x^{3} - 1}{x^{2}}\right )} + \frac {3}{5} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 21, normalized size = 0.95
method | result | size |
risch | \(\frac {{\mathrm e}^{-\frac {2 x^{3}-1}{x^{2}}} x}{4}+\frac {3 x}{5}\) | \(21\) |
norman | \(\frac {\frac {3 x^{2}}{5}+\frac {{\mathrm e}^{\frac {x^{2} \ln \relax (5)-2 x^{3}+1}{x^{2}}} x^{2}}{20}}{x}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 15, normalized size = 0.68 \begin {gather*} \frac {1}{4} \, x e^{\left (-2 \, x + \frac {1}{x^{2}}\right )} + \frac {3}{5} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.25, size = 15, normalized size = 0.68 \begin {gather*} \frac {x\,\left (5\,{\mathrm {e}}^{\frac {1}{x^2}-2\,x}+12\right )}{20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 26, normalized size = 1.18 \begin {gather*} \frac {x e^{\frac {- 2 x^{3} + x^{2} \log {\relax (5 )} + 1}{x^{2}}}}{20} + \frac {3 x}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________