Optimal. Leaf size=20 \[ \log \left (e^{25}-\left (x+x^2\right )^2 \log \left (\log ^2(\log (x))\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 24.60, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2 x+4 x^2+2 x^3+\left (2 x+6 x^2+4 x^3\right ) \log (x) \log (\log (x)) \log \left (\log ^2(\log (x))\right )}{-e^{25} \log (x) \log (\log (x))+\left (x^2+2 x^3+x^4\right ) \log (x) \log (\log (x)) \log \left (\log ^2(\log (x))\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x (1+x) \left (-1-x-\log (x) \log (\log (x)) \log \left (\log ^2(\log (x))\right )-2 x \log (x) \log (\log (x)) \log \left (\log ^2(\log (x))\right )\right )}{e^{25} \log (x) \log (\log (x))-\left (x^2+2 x^3+x^4\right ) \log (x) \log (\log (x)) \log \left (\log ^2(\log (x))\right )} \, dx\\ &=2 \int \frac {x (1+x) \left (-1-x-\log (x) \log (\log (x)) \log \left (\log ^2(\log (x))\right )-2 x \log (x) \log (\log (x)) \log \left (\log ^2(\log (x))\right )\right )}{e^{25} \log (x) \log (\log (x))-\left (x^2+2 x^3+x^4\right ) \log (x) \log (\log (x)) \log \left (\log ^2(\log (x))\right )} \, dx\\ &=2 \int \left (\frac {1+2 x}{x (1+x)}+\frac {x^2+3 x^3+3 x^4+x^5+e^{25} \log (x) \log (\log (x))+2 e^{25} x \log (x) \log (\log (x))}{x (1+x) \log (x) \log (\log (x)) \left (-e^{25}+x^2 \log \left (\log ^2(\log (x))\right )+2 x^3 \log \left (\log ^2(\log (x))\right )+x^4 \log \left (\log ^2(\log (x))\right )\right )}\right ) \, dx\\ &=2 \int \frac {1+2 x}{x (1+x)} \, dx+2 \int \frac {x^2+3 x^3+3 x^4+x^5+e^{25} \log (x) \log (\log (x))+2 e^{25} x \log (x) \log (\log (x))}{x (1+x) \log (x) \log (\log (x)) \left (-e^{25}+x^2 \log \left (\log ^2(\log (x))\right )+2 x^3 \log \left (\log ^2(\log (x))\right )+x^4 \log \left (\log ^2(\log (x))\right )\right )} \, dx\\ &=2 \int \left (\frac {1}{x}+\frac {1}{1+x}\right ) \, dx+2 \int \frac {-x^2 (1+x)^3-e^{25} (1+2 x) \log (x) \log (\log (x))}{x (1+x) \log (x) \log (\log (x)) \left (e^{25}-x^2 (1+x)^2 \log \left (\log ^2(\log (x))\right )\right )} \, dx\\ &=2 \log (x)+2 \log (1+x)+2 \int \left (\frac {-x^2-3 x^3-3 x^4-x^5-e^{25} \log (x) \log (\log (x))-2 e^{25} x \log (x) \log (\log (x))}{(1+x) \log (x) \log (\log (x)) \left (-e^{25}+x^2 \log \left (\log ^2(\log (x))\right )+2 x^3 \log \left (\log ^2(\log (x))\right )+x^4 \log \left (\log ^2(\log (x))\right )\right )}+\frac {x^2+3 x^3+3 x^4+x^5+e^{25} \log (x) \log (\log (x))+2 e^{25} x \log (x) \log (\log (x))}{x \log (x) \log (\log (x)) \left (-e^{25}+x^2 \log \left (\log ^2(\log (x))\right )+2 x^3 \log \left (\log ^2(\log (x))\right )+x^4 \log \left (\log ^2(\log (x))\right )\right )}\right ) \, dx\\ &=2 \log (x)+2 \log (1+x)+2 \int \frac {-x^2-3 x^3-3 x^4-x^5-e^{25} \log (x) \log (\log (x))-2 e^{25} x \log (x) \log (\log (x))}{(1+x) \log (x) \log (\log (x)) \left (-e^{25}+x^2 \log \left (\log ^2(\log (x))\right )+2 x^3 \log \left (\log ^2(\log (x))\right )+x^4 \log \left (\log ^2(\log (x))\right )\right )} \, dx+2 \int \frac {x^2+3 x^3+3 x^4+x^5+e^{25} \log (x) \log (\log (x))+2 e^{25} x \log (x) \log (\log (x))}{x \log (x) \log (\log (x)) \left (-e^{25}+x^2 \log \left (\log ^2(\log (x))\right )+2 x^3 \log \left (\log ^2(\log (x))\right )+x^4 \log \left (\log ^2(\log (x))\right )\right )} \, dx\\ &=2 \log (x)+2 \log (1+x)+2 \int \frac {-x^2 (1+x)^3-e^{25} (1+2 x) \log (x) \log (\log (x))}{x \log (x) \log (\log (x)) \left (e^{25}-x^2 (1+x)^2 \log \left (\log ^2(\log (x))\right )\right )} \, dx+2 \int \frac {x^2 (1+x)^3+e^{25} (1+2 x) \log (x) \log (\log (x))}{(1+x) \log (x) \log (\log (x)) \left (e^{25}-x^2 (1+x)^2 \log \left (\log ^2(\log (x))\right )\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.41, size = 38, normalized size = 1.90 \begin {gather*} \log \left (e^{25}-x^2 \log \left (\log ^2(\log (x))\right )-2 x^3 \log \left (\log ^2(\log (x))\right )-x^4 \log \left (\log ^2(\log (x))\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.55, size = 49, normalized size = 2.45 \begin {gather*} 2 \, \log \left (x^{2} + x\right ) + \log \left (\frac {{\left (x^{4} + 2 \, x^{3} + x^{2}\right )} \log \left (\log \left (\log \relax (x)\right )^{2}\right ) - e^{25}}{x^{4} + 2 \, x^{3} + x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 37, normalized size = 1.85 \begin {gather*} \log \left (-x^{4} \log \left (\log \left (\log \relax (x)\right )^{2}\right ) - 2 \, x^{3} \log \left (\log \left (\log \relax (x)\right )^{2}\right ) - x^{2} \log \left (\log \left (\log \relax (x)\right )^{2}\right ) + e^{25}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.75, size = 229, normalized size = 11.45
method | result | size |
risch | \(2 \ln \left (x^{2}+x \right )+\ln \left (\ln \left (\ln \left (\ln \relax (x )\right )\right )-\frac {i \left (\pi \,x^{4} \mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )\right )^{2} \mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )^{2}\right )-2 \pi \,x^{4} \mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )\right ) \mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )^{2}\right )^{2}+\pi \,x^{4} \mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )^{2}\right )^{3}+2 \pi \,x^{3} \mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )\right )^{2} \mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )^{2}\right )-4 \pi \,x^{3} \mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )\right ) \mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )^{2}\right )^{2}+2 \pi \,x^{3} \mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )^{2}\right )^{3}+\pi \,x^{2} \mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )\right )^{2} \mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )^{2}\right )-2 \pi \,x^{2} \mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )\right ) \mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )^{2}\right )^{2}+\pi \,x^{2} \mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )^{2}\right )^{3}-2 i {\mathrm e}^{25}\right )}{4 x^{2} \left (x^{2}+2 x +1\right )}\right )\) | \(229\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 51, normalized size = 2.55 \begin {gather*} 2 \, \log \left (x + 1\right ) + 2 \, \log \relax (x) + \log \left (\frac {2 \, {\left (x^{4} + 2 \, x^{3} + x^{2}\right )} \log \left (\log \left (\log \relax (x)\right )\right ) - e^{25}}{2 \, {\left (x^{4} + 2 \, x^{3} + x^{2}\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} -\int \frac {2\,x+4\,x^2+2\,x^3+\ln \left ({\ln \left (\ln \relax (x)\right )}^2\right )\,\ln \left (\ln \relax (x)\right )\,\ln \relax (x)\,\left (4\,x^3+6\,x^2+2\,x\right )}{\ln \left (\ln \relax (x)\right )\,{\mathrm {e}}^{25}\,\ln \relax (x)-\ln \left ({\ln \left (\ln \relax (x)\right )}^2\right )\,\ln \left (\ln \relax (x)\right )\,\ln \relax (x)\,\left (x^4+2\,x^3+x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.07, size = 32, normalized size = 1.60 \begin {gather*} 2 \log {\left (x^{2} + x \right )} + \log {\left (\log {\left (\log {\left (\log {\relax (x )} \right )}^{2} \right )} - \frac {e^{25}}{x^{4} + 2 x^{3} + x^{2}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________