Optimal. Leaf size=21 \[ e^{\frac {e^{x^2}}{25 x^3-x^4}} \]
________________________________________________________________________________________
Rubi [F] time = 1.71, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{x^2-\frac {e^{x^2}}{-25 x^3+x^4}} \left (-75+4 x+50 x^2-2 x^3\right )}{625 x^4-50 x^5+x^6} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{x^2-\frac {e^{x^2}}{-25 x^3+x^4}} \left (-75+4 x+50 x^2-2 x^3\right )}{x^4 \left (625-50 x+x^2\right )} \, dx\\ &=\int \frac {e^{x^2-\frac {e^{x^2}}{-25 x^3+x^4}} \left (-75+4 x+50 x^2-2 x^3\right )}{(-25+x)^2 x^4} \, dx\\ &=\int \left (\frac {e^{x^2-\frac {e^{x^2}}{-25 x^3+x^4}}}{15625 (-25+x)^2}-\frac {2 e^{x^2-\frac {e^{x^2}}{-25 x^3+x^4}}}{625 (-25+x)}-\frac {3 e^{x^2-\frac {e^{x^2}}{-25 x^3+x^4}}}{25 x^4}-\frac {2 e^{x^2-\frac {e^{x^2}}{-25 x^3+x^4}}}{625 x^3}+\frac {1249 e^{x^2-\frac {e^{x^2}}{-25 x^3+x^4}}}{15625 x^2}+\frac {2 e^{x^2-\frac {e^{x^2}}{-25 x^3+x^4}}}{625 x}\right ) \, dx\\ &=\frac {\int \frac {e^{x^2-\frac {e^{x^2}}{-25 x^3+x^4}}}{(-25+x)^2} \, dx}{15625}-\frac {2}{625} \int \frac {e^{x^2-\frac {e^{x^2}}{-25 x^3+x^4}}}{-25+x} \, dx-\frac {2}{625} \int \frac {e^{x^2-\frac {e^{x^2}}{-25 x^3+x^4}}}{x^3} \, dx+\frac {2}{625} \int \frac {e^{x^2-\frac {e^{x^2}}{-25 x^3+x^4}}}{x} \, dx+\frac {1249 \int \frac {e^{x^2-\frac {e^{x^2}}{-25 x^3+x^4}}}{x^2} \, dx}{15625}-\frac {3}{25} \int \frac {e^{x^2-\frac {e^{x^2}}{-25 x^3+x^4}}}{x^4} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.49, size = 17, normalized size = 0.81 \begin {gather*} e^{-\frac {e^{x^2}}{(-25+x) x^3}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.11, size = 34, normalized size = 1.62 \begin {gather*} e^{\left (-x^{2} + \frac {x^{6} - 25 \, x^{5} - e^{\left (x^{2}\right )}}{x^{4} - 25 \, x^{3}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (2 \, x^{3} - 50 \, x^{2} - 4 \, x + 75\right )} e^{\left (x^{2} - \frac {e^{\left (x^{2}\right )}}{x^{4} - 25 \, x^{3}}\right )}}{x^{6} - 50 \, x^{5} + 625 \, x^{4}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 16, normalized size = 0.76
method | result | size |
risch | \({\mathrm e}^{-\frac {{\mathrm e}^{x^{2}}}{x^{3} \left (x -25\right )}}\) | \(16\) |
norman | \(\frac {x^{4} {\mathrm e}^{-\frac {{\mathrm e}^{x^{2}}}{x^{4}-25 x^{3}}}-25 x^{3} {\mathrm e}^{-\frac {{\mathrm e}^{x^{2}}}{x^{4}-25 x^{3}}}}{x^{3} \left (x -25\right )}\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 40, normalized size = 1.90 \begin {gather*} e^{\left (-\frac {e^{\left (x^{2}\right )}}{15625 \, {\left (x - 25\right )}} + \frac {e^{\left (x^{2}\right )}}{15625 \, x} + \frac {e^{\left (x^{2}\right )}}{625 \, x^{2}} + \frac {e^{\left (x^{2}\right )}}{25 \, x^{3}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.87, size = 19, normalized size = 0.90 \begin {gather*} {\mathrm {e}}^{\frac {{\mathrm {e}}^{x^2}}{25\,x^3-x^4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.42, size = 15, normalized size = 0.71 \begin {gather*} e^{- \frac {e^{x^{2}}}{x^{4} - 25 x^{3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________