Optimal. Leaf size=30 \[ \left (x-x \left (-x+\frac {e^{25}+x}{x}\right ) \log \left (e^4-x+\log (x)\right )\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 2.83, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 x^2+2 e^4 x^2+2 x^3-2 x^4+e^{25} \left (-2 x+2 x^2\right )+2 x^2 \log (x)+\left (e^{50} (2-2 x)+2 x^2-2 x^3-2 x^5+e^{25} \left (4 x-2 e^4 x-6 x^2+4 x^3\right )+e^4 \left (-4 x^2+6 x^3\right )+\left (-2 e^{25} x-4 x^2+6 x^3\right ) \log (x)\right ) \log \left (e^4-x+\log (x)\right )+\left (-2 x^3+6 x^4-4 x^5+e^4 \left (2 x^2-6 x^3+4 x^4\right )+e^{25} \left (-2 x^2+4 x^3+e^4 \left (2 x-4 x^2\right )\right )+\left (2 x^2-6 x^3+4 x^4+e^{25} \left (2 x-4 x^2\right )\right ) \log (x)\right ) \log ^2\left (e^4-x+\log (x)\right )}{e^4 x-x^2+x \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-2+2 e^4\right ) x^2+2 x^3-2 x^4+e^{25} \left (-2 x+2 x^2\right )+2 x^2 \log (x)+\left (e^{50} (2-2 x)+2 x^2-2 x^3-2 x^5+e^{25} \left (4 x-2 e^4 x-6 x^2+4 x^3\right )+e^4 \left (-4 x^2+6 x^3\right )+\left (-2 e^{25} x-4 x^2+6 x^3\right ) \log (x)\right ) \log \left (e^4-x+\log (x)\right )+\left (-2 x^3+6 x^4-4 x^5+e^4 \left (2 x^2-6 x^3+4 x^4\right )+e^{25} \left (-2 x^2+4 x^3+e^4 \left (2 x-4 x^2\right )\right )+\left (2 x^2-6 x^3+4 x^4+e^{25} \left (2 x-4 x^2\right )\right ) \log (x)\right ) \log ^2\left (e^4-x+\log (x)\right )}{e^4 x-x^2+x \log (x)} \, dx\\ &=\int \frac {2 \left (x-\left (e^{25}+x-x^2\right ) \log \left (e^4-x+\log (x)\right )\right ) \left (-e^{25}-\left (1-e^4 \left (1+e^{21}\right )\right ) x+x^2-x^3-x \left (e^4 (1-2 x)+x (-1+2 x)\right ) \log \left (e^4-x+\log (x)\right )+\log (x) \left (x+x (-1+2 x) \log \left (e^4-x+\log (x)\right )\right )\right )}{x \left (e^4-x+\log (x)\right )} \, dx\\ &=2 \int \frac {\left (x-\left (e^{25}+x-x^2\right ) \log \left (e^4-x+\log (x)\right )\right ) \left (-e^{25}-\left (1-e^4 \left (1+e^{21}\right )\right ) x+x^2-x^3-x \left (e^4 (1-2 x)+x (-1+2 x)\right ) \log \left (e^4-x+\log (x)\right )+\log (x) \left (x+x (-1+2 x) \log \left (e^4-x+\log (x)\right )\right )\right )}{x \left (e^4-x+\log (x)\right )} \, dx\\ &=2 \int \left (\frac {-e^{25}-\left (1-e^4 \left (1+e^{21}\right )\right ) x+x^2-x^3+x \log (x)}{e^4-x+\log (x)}+\frac {\left (e^{50}+2 e^{25} \left (1-\frac {1}{2} e^4 \left (1+e^{21}\right )\right ) x+\left (1-e^4 \left (2+3 e^{21}\right )\right ) x^2-\left (1-e^4 \left (3+2 e^{21}\right )\right ) x^3-x^5-e^{25} x \log (x)-2 x^2 \log (x)+3 x^3 \log (x)\right ) \log \left (e^4-x+\log (x)\right )}{x \left (e^4-x+\log (x)\right )}+(-1+2 x) \left (-e^{25}-x+x^2\right ) \log ^2\left (e^4-x+\log (x)\right )\right ) \, dx\\ &=2 \int \frac {-e^{25}-\left (1-e^4 \left (1+e^{21}\right )\right ) x+x^2-x^3+x \log (x)}{e^4-x+\log (x)} \, dx+2 \int \frac {\left (e^{50}+2 e^{25} \left (1-\frac {1}{2} e^4 \left (1+e^{21}\right )\right ) x+\left (1-e^4 \left (2+3 e^{21}\right )\right ) x^2-\left (1-e^4 \left (3+2 e^{21}\right )\right ) x^3-x^5-e^{25} x \log (x)-2 x^2 \log (x)+3 x^3 \log (x)\right ) \log \left (e^4-x+\log (x)\right )}{x \left (e^4-x+\log (x)\right )} \, dx+2 \int (-1+2 x) \left (-e^{25}-x+x^2\right ) \log ^2\left (e^4-x+\log (x)\right ) \, dx\\ &=2 \int \left (x+\frac {(-1+x) \left (-e^{25}-x+x^2\right )}{-e^4+x-\log (x)}\right ) \, dx+2 \int \left (-\frac {e^{50} \log \left (e^4-x+\log (x)\right )}{x \left (-e^4+x-\log (x)\right )}-\frac {e^{25} \left (-2+e^4+e^{25}\right ) \log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)}-\frac {\left (-1+2 e^4+3 e^{25}\right ) x \log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)}+\frac {\left (-1+3 e^4+2 e^{25}\right ) x^2 \log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)}-\frac {x^4 \log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)}-\frac {e^{25} \log (x) \log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)}-\frac {2 x \log (x) \log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)}+\frac {3 x^2 \log (x) \log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)}\right ) \, dx+2 \int \left (e^{25} \log ^2\left (e^4-x+\log (x)\right )-\left (-1+2 e^{25}\right ) x \log ^2\left (e^4-x+\log (x)\right )-3 x^2 \log ^2\left (e^4-x+\log (x)\right )+2 x^3 \log ^2\left (e^4-x+\log (x)\right )\right ) \, dx\\ &=x^2+2 \int \frac {(-1+x) \left (-e^{25}-x+x^2\right )}{-e^4+x-\log (x)} \, dx-2 \int \frac {x^4 \log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)} \, dx-4 \int \frac {x \log (x) \log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)} \, dx+4 \int x^3 \log ^2\left (e^4-x+\log (x)\right ) \, dx+6 \int \frac {x^2 \log (x) \log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)} \, dx-6 \int x^2 \log ^2\left (e^4-x+\log (x)\right ) \, dx-\left (2 e^{25}\right ) \int \frac {\log (x) \log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)} \, dx+\left (2 e^{25}\right ) \int \log ^2\left (e^4-x+\log (x)\right ) \, dx-\left (2 e^{50}\right ) \int \frac {\log \left (e^4-x+\log (x)\right )}{x \left (-e^4+x-\log (x)\right )} \, dx+\left (2 \left (1-2 e^4-3 e^{25}\right )\right ) \int \frac {x \log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)} \, dx+\left (2 \left (1-2 e^{25}\right )\right ) \int x \log ^2\left (e^4-x+\log (x)\right ) \, dx-\left (2 \left (1-3 e^4-2 e^{25}\right )\right ) \int \frac {x^2 \log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)} \, dx+\left (2 e^{25} \left (2-e^4-e^{25}\right )\right ) \int \frac {\log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)} \, dx\\ &=x^2+2 \int \left (-\frac {e^{25}}{e^4-x+\log (x)}+\frac {\left (-1+e^{25}\right ) x}{e^4-x+\log (x)}+\frac {2 x^2}{e^4-x+\log (x)}-\frac {x^3}{e^4-x+\log (x)}\right ) \, dx-2 \int \frac {x^4 \log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)} \, dx-4 \int \frac {x \log (x) \log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)} \, dx+4 \int x^3 \log ^2\left (e^4-x+\log (x)\right ) \, dx+6 \int \frac {x^2 \log (x) \log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)} \, dx-6 \int x^2 \log ^2\left (e^4-x+\log (x)\right ) \, dx-\left (2 e^{25}\right ) \int \frac {\log (x) \log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)} \, dx+\left (2 e^{25}\right ) \int \log ^2\left (e^4-x+\log (x)\right ) \, dx-\left (2 e^{50}\right ) \int \frac {\log \left (e^4-x+\log (x)\right )}{x \left (-e^4+x-\log (x)\right )} \, dx+\left (2 \left (1-2 e^4-3 e^{25}\right )\right ) \int \frac {x \log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)} \, dx+\left (2 \left (1-2 e^{25}\right )\right ) \int x \log ^2\left (e^4-x+\log (x)\right ) \, dx-\left (2 \left (1-3 e^4-2 e^{25}\right )\right ) \int \frac {x^2 \log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)} \, dx+\left (2 e^{25} \left (2-e^4-e^{25}\right )\right ) \int \frac {\log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)} \, dx\\ &=x^2-2 \int \frac {x^3}{e^4-x+\log (x)} \, dx-2 \int \frac {x^4 \log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)} \, dx+4 \int \frac {x^2}{e^4-x+\log (x)} \, dx-4 \int \frac {x \log (x) \log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)} \, dx+4 \int x^3 \log ^2\left (e^4-x+\log (x)\right ) \, dx+6 \int \frac {x^2 \log (x) \log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)} \, dx-6 \int x^2 \log ^2\left (e^4-x+\log (x)\right ) \, dx-\left (2 e^{25}\right ) \int \frac {1}{e^4-x+\log (x)} \, dx-\left (2 e^{25}\right ) \int \frac {\log (x) \log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)} \, dx+\left (2 e^{25}\right ) \int \log ^2\left (e^4-x+\log (x)\right ) \, dx-\left (2 e^{50}\right ) \int \frac {\log \left (e^4-x+\log (x)\right )}{x \left (-e^4+x-\log (x)\right )} \, dx+\left (2 \left (1-2 e^4-3 e^{25}\right )\right ) \int \frac {x \log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)} \, dx+\left (2 \left (1-2 e^{25}\right )\right ) \int x \log ^2\left (e^4-x+\log (x)\right ) \, dx-\left (2 \left (1-3 e^4-2 e^{25}\right )\right ) \int \frac {x^2 \log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)} \, dx-\left (2 \left (1-e^{25}\right )\right ) \int \frac {x}{e^4-x+\log (x)} \, dx+\left (2 e^{25} \left (2-e^4-e^{25}\right )\right ) \int \frac {\log \left (e^4-x+\log (x)\right )}{e^4-x+\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 26, normalized size = 0.87 \begin {gather*} \left (x-\left (e^{25}+x-x^2\right ) \log \left (e^4-x+\log (x)\right )\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.69, size = 66, normalized size = 2.20 \begin {gather*} {\left (x^{4} - 2 \, x^{3} + x^{2} - 2 \, {\left (x^{2} - x\right )} e^{25} + e^{50}\right )} \log \left (-x + e^{4} + \log \relax (x)\right )^{2} + x^{2} + 2 \, {\left (x^{3} - x^{2} - x e^{25}\right )} \log \left (-x + e^{4} + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 140, normalized size = 4.67 \begin {gather*} x^{4} \log \left (-x + e^{4} + \log \relax (x)\right )^{2} - 2 \, x^{3} \log \left (-x + e^{4} + \log \relax (x)\right )^{2} - 2 \, x^{2} e^{25} \log \left (-x + e^{4} + \log \relax (x)\right )^{2} + 2 \, x^{3} \log \left (-x + e^{4} + \log \relax (x)\right ) + x^{2} \log \left (-x + e^{4} + \log \relax (x)\right )^{2} + 2 \, x e^{25} \log \left (-x + e^{4} + \log \relax (x)\right )^{2} - 2 \, x^{2} \log \left (-x + e^{4} + \log \relax (x)\right ) - 2 \, x e^{25} \log \left (-x + e^{4} + \log \relax (x)\right ) + e^{50} \log \left (-x + e^{4} + \log \relax (x)\right )^{2} + x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.09, size = 69, normalized size = 2.30
method | result | size |
risch | \(\left ({\mathrm e}^{50}-2 x^{2} {\mathrm e}^{25}+2 x \,{\mathrm e}^{25}+x^{4}-2 x^{3}+x^{2}\right ) \ln \left (\ln \relax (x )+{\mathrm e}^{4}-x \right )^{2}+\left (-2 x \,{\mathrm e}^{25}+2 x^{3}-2 x^{2}\right ) \ln \left (\ln \relax (x )+{\mathrm e}^{4}-x \right )+x^{2}\) | \(69\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 68, normalized size = 2.27 \begin {gather*} {\left (x^{4} - 2 \, x^{3} - x^{2} {\left (2 \, e^{25} - 1\right )} + 2 \, x e^{25} + e^{50}\right )} \log \left (-x + e^{4} + \log \relax (x)\right )^{2} + x^{2} + 2 \, {\left (x^{3} - x^{2} - x e^{25}\right )} \log \left (-x + e^{4} + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.58, size = 70, normalized size = 2.33 \begin {gather*} {\ln \left ({\mathrm {e}}^4-x+\ln \relax (x)\right )}^2\,\left (x^4-2\,x^3+\left (1-2\,{\mathrm {e}}^{25}\right )\,x^2+2\,{\mathrm {e}}^{25}\,x+{\mathrm {e}}^{50}\right )-\ln \left ({\mathrm {e}}^4-x+\ln \relax (x)\right )\,\left (-2\,x^3+2\,x^2+2\,{\mathrm {e}}^{25}\,x\right )+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.77, size = 71, normalized size = 2.37 \begin {gather*} x^{2} + \left (2 x^{3} - 2 x^{2} - 2 x e^{25}\right ) \log {\left (- x + \log {\relax (x )} + e^{4} \right )} + \left (x^{4} - 2 x^{3} - 2 x^{2} e^{25} + x^{2} + 2 x e^{25} + e^{50}\right ) \log {\left (- x + \log {\relax (x )} + e^{4} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________