Optimal. Leaf size=27 \[ x \left (-x+x \left (-2+\frac {3}{x}+4 x^4-\log \left (\log \left (x^3\right )\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 24, normalized size of antiderivative = 0.89, number of steps used = 7, number of rules used = 4, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {6688, 2310, 2178, 2522} \begin {gather*} 4 x^6-3 x^2-x^2 \log \left (\log \left (x^3\right )\right )+3 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2178
Rule 2310
Rule 2522
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (3-6 x+24 x^5-\frac {3 x}{\log \left (x^3\right )}-2 x \log \left (\log \left (x^3\right )\right )\right ) \, dx\\ &=3 x-3 x^2+4 x^6-2 \int x \log \left (\log \left (x^3\right )\right ) \, dx-3 \int \frac {x}{\log \left (x^3\right )} \, dx\\ &=3 x-3 x^2+4 x^6-x^2 \log \left (\log \left (x^3\right )\right )+3 \int \frac {x}{\log \left (x^3\right )} \, dx-\frac {x^2 \operatorname {Subst}\left (\int \frac {e^{2 x/3}}{x} \, dx,x,\log \left (x^3\right )\right )}{\left (x^3\right )^{2/3}}\\ &=3 x-3 x^2+4 x^6-\frac {x^2 \text {Ei}\left (\frac {2 \log \left (x^3\right )}{3}\right )}{\left (x^3\right )^{2/3}}-x^2 \log \left (\log \left (x^3\right )\right )+\frac {x^2 \operatorname {Subst}\left (\int \frac {e^{2 x/3}}{x} \, dx,x,\log \left (x^3\right )\right )}{\left (x^3\right )^{2/3}}\\ &=3 x-3 x^2+4 x^6-x^2 \log \left (\log \left (x^3\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 24, normalized size = 0.89 \begin {gather*} 3 x-3 x^2+4 x^6-x^2 \log \left (\log \left (x^3\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.01, size = 24, normalized size = 0.89 \begin {gather*} 4 \, x^{6} - x^{2} \log \left (\log \left (x^{3}\right )\right ) - 3 \, x^{2} + 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 24, normalized size = 0.89 \begin {gather*} 4 \, x^{6} - x^{2} \log \left (\log \left (x^{3}\right )\right ) - 3 \, x^{2} + 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.01, size = 0, normalized size = 0.00 \[\int \frac {-2 x \ln \left (x^{3}\right ) \ln \left (\ln \left (x^{3}\right )\right )+\left (24 x^{5}-6 x +3\right ) \ln \left (x^{3}\right )-3 x}{\ln \left (x^{3}\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 29, normalized size = 1.07 \begin {gather*} 4 \, x^{6} - x^{2} \log \relax (3) - x^{2} \log \left (\log \relax (x)\right ) - 3 \, x^{2} + 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.73, size = 24, normalized size = 0.89 \begin {gather*} 3\,x-3\,x^2+4\,x^6-x^2\,\ln \left (\ln \left (x^3\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 22, normalized size = 0.81 \begin {gather*} 4 x^{6} - x^{2} \log {\left (\log {\left (x^{3} \right )} \right )} - 3 x^{2} + 3 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________