Optimal. Leaf size=28 \[ \frac {e^{-1-e^{25}} x (4+x+\log (x))}{-2+5 e^{-2 x}+x} \]
________________________________________________________________________________________
Rubi [F] time = 7.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-1-e^{25}} \left (e^{4 x} \left (-10-3 x+x^2\right )+e^{2 x} \left (25+50 x+10 x^2\right )+\left (-2 e^{4 x}+e^{2 x} (5+10 x)\right ) \log (x)\right )}{25+e^{2 x} (-20+10 x)+e^{4 x} \left (4-4 x+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^{-1-e^{25}} \int \frac {e^{4 x} \left (-10-3 x+x^2\right )+e^{2 x} \left (25+50 x+10 x^2\right )+\left (-2 e^{4 x}+e^{2 x} (5+10 x)\right ) \log (x)}{25+e^{2 x} (-20+10 x)+e^{4 x} \left (4-4 x+x^2\right )} \, dx\\ &=e^{-1-e^{25}} \int \frac {e^{2 x} \left (e^{2 x} \left (-10-3 x+x^2\right )+5 \left (5+10 x+2 x^2\right )+\left (5-2 e^{2 x}+10 x\right ) \log (x)\right )}{\left (5+e^{2 x} (-2+x)\right )^2} \, dx\\ &=e^{-1-e^{25}} \int \left (\frac {e^{2 x} \left (-10-3 x+x^2-2 \log (x)\right )}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )}+\frac {5 e^{2 x} x (-3+2 x) (4+x+\log (x))}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )^2}\right ) \, dx\\ &=e^{-1-e^{25}} \int \frac {e^{2 x} \left (-10-3 x+x^2-2 \log (x)\right )}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )} \, dx+\left (5 e^{-1-e^{25}}\right ) \int \frac {e^{2 x} x (-3+2 x) (4+x+\log (x))}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )^2} \, dx\\ &=e^{-1-e^{25}} \int \left (-\frac {10 e^{2 x}}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )}-\frac {3 e^{2 x} x}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )}+\frac {e^{2 x} x^2}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )}-\frac {2 e^{2 x} \log (x)}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )}\right ) \, dx+\left (5 e^{-1-e^{25}}\right ) \int \left (\frac {e^{2 x} (4+x+\log (x))}{\left (5-2 e^{2 x}+e^{2 x} x\right )^2}+\frac {2 e^{2 x} (4+x+\log (x))}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )^2}+\frac {2 e^{2 x} x (4+x+\log (x))}{\left (5-2 e^{2 x}+e^{2 x} x\right )^2}\right ) \, dx\\ &=e^{-1-e^{25}} \int \frac {e^{2 x} x^2}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )} \, dx-\left (2 e^{-1-e^{25}}\right ) \int \frac {e^{2 x} \log (x)}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )} \, dx-\left (3 e^{-1-e^{25}}\right ) \int \frac {e^{2 x} x}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )} \, dx+\left (5 e^{-1-e^{25}}\right ) \int \frac {e^{2 x} (4+x+\log (x))}{\left (5-2 e^{2 x}+e^{2 x} x\right )^2} \, dx-\left (10 e^{-1-e^{25}}\right ) \int \frac {e^{2 x}}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )} \, dx+\left (10 e^{-1-e^{25}}\right ) \int \frac {e^{2 x} (4+x+\log (x))}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )^2} \, dx+\left (10 e^{-1-e^{25}}\right ) \int \frac {e^{2 x} x (4+x+\log (x))}{\left (5-2 e^{2 x}+e^{2 x} x\right )^2} \, dx\\ &=e^{-1-e^{25}} \int \left (\frac {2 e^{2 x}}{5-2 e^{2 x}+e^{2 x} x}+\frac {4 e^{2 x}}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )}+\frac {e^{2 x} x}{5-2 e^{2 x}+e^{2 x} x}\right ) \, dx+\left (2 e^{-1-e^{25}}\right ) \int \frac {\int \frac {e^{2 x}}{\left (5+e^{2 x} (-2+x)\right ) (-2+x)} \, dx}{x} \, dx-\left (3 e^{-1-e^{25}}\right ) \int \left (\frac {e^{2 x}}{5-2 e^{2 x}+e^{2 x} x}+\frac {2 e^{2 x}}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )}\right ) \, dx+\left (5 e^{-1-e^{25}}\right ) \int \frac {e^{2 x} (4+x+\log (x))}{\left (5+e^{2 x} (-2+x)\right )^2} \, dx-\left (10 e^{-1-e^{25}}\right ) \int \frac {e^{2 x}}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )} \, dx+\left (10 e^{-1-e^{25}}\right ) \int \frac {e^{2 x} x (4+x+\log (x))}{\left (5+e^{2 x} (-2+x)\right )^2} \, dx+\left (10 e^{-1-e^{25}}\right ) \int \left (\frac {4 e^{2 x}}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )^2}+\frac {e^{2 x} x}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )^2}+\frac {e^{2 x} \log (x)}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )^2}\right ) \, dx-\left (2 e^{-1-e^{25}} \log (x)\right ) \int \frac {e^{2 x}}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )} \, dx\\ &=e^{-1-e^{25}} \int \frac {e^{2 x} x}{5-2 e^{2 x}+e^{2 x} x} \, dx+\left (2 e^{-1-e^{25}}\right ) \int \frac {e^{2 x}}{5-2 e^{2 x}+e^{2 x} x} \, dx+\left (2 e^{-1-e^{25}}\right ) \int \frac {\int \frac {e^{2 x}}{\left (5+e^{2 x} (-2+x)\right ) (-2+x)} \, dx}{x} \, dx-\left (3 e^{-1-e^{25}}\right ) \int \frac {e^{2 x}}{5-2 e^{2 x}+e^{2 x} x} \, dx+\left (4 e^{-1-e^{25}}\right ) \int \frac {e^{2 x}}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )} \, dx+\left (5 e^{-1-e^{25}}\right ) \int \left (\frac {4 e^{2 x}}{\left (5-2 e^{2 x}+e^{2 x} x\right )^2}+\frac {e^{2 x} x}{\left (5-2 e^{2 x}+e^{2 x} x\right )^2}+\frac {e^{2 x} \log (x)}{\left (5-2 e^{2 x}+e^{2 x} x\right )^2}\right ) \, dx-\left (6 e^{-1-e^{25}}\right ) \int \frac {e^{2 x}}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )} \, dx+\left (10 e^{-1-e^{25}}\right ) \int \frac {e^{2 x} x}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )^2} \, dx-\left (10 e^{-1-e^{25}}\right ) \int \frac {e^{2 x}}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )} \, dx+\left (10 e^{-1-e^{25}}\right ) \int \frac {e^{2 x} \log (x)}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )^2} \, dx+\left (10 e^{-1-e^{25}}\right ) \int \left (\frac {4 e^{2 x} x}{\left (5-2 e^{2 x}+e^{2 x} x\right )^2}+\frac {e^{2 x} x^2}{\left (5-2 e^{2 x}+e^{2 x} x\right )^2}+\frac {e^{2 x} x \log (x)}{\left (5-2 e^{2 x}+e^{2 x} x\right )^2}\right ) \, dx+\left (40 e^{-1-e^{25}}\right ) \int \frac {e^{2 x}}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )^2} \, dx-\left (2 e^{-1-e^{25}} \log (x)\right ) \int \frac {e^{2 x}}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )} \, dx\\ &=e^{-1-e^{25}} \int \frac {e^{2 x} x}{5+e^{2 x} (-2+x)} \, dx+\left (2 e^{-1-e^{25}}\right ) \int \frac {e^{2 x}}{5+e^{2 x} (-2+x)} \, dx+\left (2 e^{-1-e^{25}}\right ) \int \frac {\int \frac {e^{2 x}}{\left (5+e^{2 x} (-2+x)\right ) (-2+x)} \, dx}{x} \, dx-\left (3 e^{-1-e^{25}}\right ) \int \frac {e^{2 x}}{5+e^{2 x} (-2+x)} \, dx+\left (4 e^{-1-e^{25}}\right ) \int \frac {e^{2 x}}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )} \, dx+\left (5 e^{-1-e^{25}}\right ) \int \frac {e^{2 x} x}{\left (5-2 e^{2 x}+e^{2 x} x\right )^2} \, dx+\left (5 e^{-1-e^{25}}\right ) \int \frac {e^{2 x} \log (x)}{\left (5-2 e^{2 x}+e^{2 x} x\right )^2} \, dx-\left (6 e^{-1-e^{25}}\right ) \int \frac {e^{2 x}}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )} \, dx+\left (10 e^{-1-e^{25}}\right ) \int \frac {e^{2 x} x}{\left (5+e^{2 x} (-2+x)\right )^2 (-2+x)} \, dx+\left (10 e^{-1-e^{25}}\right ) \int \frac {e^{2 x} x^2}{\left (5-2 e^{2 x}+e^{2 x} x\right )^2} \, dx-\left (10 e^{-1-e^{25}}\right ) \int \frac {e^{2 x}}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )} \, dx+\left (10 e^{-1-e^{25}}\right ) \int \frac {e^{2 x} x \log (x)}{\left (5-2 e^{2 x}+e^{2 x} x\right )^2} \, dx-\left (10 e^{-1-e^{25}}\right ) \int \frac {\int \frac {e^{2 x}}{\left (5+e^{2 x} (-2+x)\right )^2 (-2+x)} \, dx}{x} \, dx+\left (20 e^{-1-e^{25}}\right ) \int \frac {e^{2 x}}{\left (5-2 e^{2 x}+e^{2 x} x\right )^2} \, dx+\left (40 e^{-1-e^{25}}\right ) \int \frac {e^{2 x}}{\left (5+e^{2 x} (-2+x)\right )^2 (-2+x)} \, dx+\left (40 e^{-1-e^{25}}\right ) \int \frac {e^{2 x} x}{\left (5-2 e^{2 x}+e^{2 x} x\right )^2} \, dx-\left (2 e^{-1-e^{25}} \log (x)\right ) \int \frac {e^{2 x}}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )} \, dx+\left (10 e^{-1-e^{25}} \log (x)\right ) \int \frac {e^{2 x}}{\left (5+e^{2 x} (-2+x)\right )^2 (-2+x)} \, dx\\ &=e^{-1-e^{25}} \int \frac {e^{2 x} x}{5+e^{2 x} (-2+x)} \, dx+\left (2 e^{-1-e^{25}}\right ) \int \frac {e^{2 x}}{5+e^{2 x} (-2+x)} \, dx+\left (2 e^{-1-e^{25}}\right ) \int \frac {\int \frac {e^{2 x}}{\left (5+e^{2 x} (-2+x)\right ) (-2+x)} \, dx}{x} \, dx-\left (3 e^{-1-e^{25}}\right ) \int \frac {e^{2 x}}{5+e^{2 x} (-2+x)} \, dx+\left (4 e^{-1-e^{25}}\right ) \int \frac {e^{2 x}}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )} \, dx+\left (5 e^{-1-e^{25}}\right ) \int \frac {e^{2 x} x}{\left (5+e^{2 x} (-2+x)\right )^2} \, dx-\left (5 e^{-1-e^{25}}\right ) \int \frac {\int \frac {e^{2 x}}{\left (5+e^{2 x} (-2+x)\right )^2} \, dx}{x} \, dx-\left (6 e^{-1-e^{25}}\right ) \int \frac {e^{2 x}}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )} \, dx+\left (10 e^{-1-e^{25}}\right ) \int \frac {e^{2 x} x^2}{\left (5+e^{2 x} (-2+x)\right )^2} \, dx-\left (10 e^{-1-e^{25}}\right ) \int \frac {e^{2 x}}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )} \, dx+\left (10 e^{-1-e^{25}}\right ) \int \left (\frac {e^{2 x}}{\left (5-2 e^{2 x}+e^{2 x} x\right )^2}+\frac {2 e^{2 x}}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )^2}\right ) \, dx-\left (10 e^{-1-e^{25}}\right ) \int \frac {\int \frac {e^{2 x}}{\left (5+e^{2 x} (-2+x)\right )^2 (-2+x)} \, dx}{x} \, dx-\left (10 e^{-1-e^{25}}\right ) \int \frac {\int \frac {e^{2 x} x}{\left (5+e^{2 x} (-2+x)\right )^2} \, dx}{x} \, dx+\left (20 e^{-1-e^{25}}\right ) \int \frac {e^{2 x}}{\left (5+e^{2 x} (-2+x)\right )^2} \, dx+\left (40 e^{-1-e^{25}}\right ) \int \frac {e^{2 x}}{\left (5+e^{2 x} (-2+x)\right )^2 (-2+x)} \, dx+\left (40 e^{-1-e^{25}}\right ) \int \frac {e^{2 x} x}{\left (5+e^{2 x} (-2+x)\right )^2} \, dx-\left (2 e^{-1-e^{25}} \log (x)\right ) \int \frac {e^{2 x}}{(-2+x) \left (5-2 e^{2 x}+e^{2 x} x\right )} \, dx+\left (5 e^{-1-e^{25}} \log (x)\right ) \int \frac {e^{2 x}}{\left (5+e^{2 x} (-2+x)\right )^2} \, dx+\left (10 e^{-1-e^{25}} \log (x)\right ) \int \frac {e^{2 x}}{\left (5+e^{2 x} (-2+x)\right )^2 (-2+x)} \, dx+\left (10 e^{-1-e^{25}} \log (x)\right ) \int \frac {e^{2 x} x}{\left (5+e^{2 x} (-2+x)\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.89, size = 48, normalized size = 1.71 \begin {gather*} \frac {e^{-1-e^{25}} \left (-30+e^{2 x} \left (12-2 x+x^2\right )+e^{2 x} x \log (x)\right )}{5+e^{2 x} (-2+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.44, size = 43, normalized size = 1.54 \begin {gather*} \frac {{\left (x e^{\left (2 \, x\right )} \log \relax (x) + {\left (x^{2} - 2 \, x + 12\right )} e^{\left (2 \, x\right )} - 30\right )} e^{\left (-e^{25} - 1\right )}}{{\left (x - 2\right )} e^{\left (2 \, x\right )} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 55, normalized size = 1.96 \begin {gather*} \frac {{\left (x^{2} e^{\left (2 \, x\right )} + x e^{\left (2 \, x\right )} \log \relax (x) - 2 \, x e^{\left (2 \, x\right )} + 12 \, e^{\left (2 \, x\right )} - 30\right )} e^{\left (-e^{25} - 1\right )}}{x e^{\left (2 \, x\right )} - 2 \, e^{\left (2 \, x\right )} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.07, size = 103, normalized size = 3.68
method | result | size |
risch | \(\frac {\ln \relax (x ) \left (2 \,{\mathrm e}^{2 x}-5\right ) {\mathrm e}^{-{\mathrm e}^{25}-1}}{x \,{\mathrm e}^{2 x}-2 \,{\mathrm e}^{2 x}+5}+\frac {\left (\ln \relax (x ) {\mathrm e}^{2 x} x +{\mathrm e}^{2 x} x^{2}-2 \ln \relax (x ) {\mathrm e}^{2 x}-2 x \,{\mathrm e}^{2 x}+12 \,{\mathrm e}^{2 x}+5 \ln \relax (x )-30\right ) {\mathrm e}^{-{\mathrm e}^{25}-1}}{x \,{\mathrm e}^{2 x}-2 \,{\mathrm e}^{2 x}+5}\) | \(103\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 39, normalized size = 1.39 \begin {gather*} \frac {{\left ({\left (x^{2} + x \log \relax (x) - 2 \, x + 12\right )} e^{\left (2 \, x\right )} - 30\right )} e^{\left (-e^{25} - 1\right )}}{{\left (x - 2\right )} e^{\left (2 \, x\right )} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} -\int \frac {{\mathrm {e}}^{-{\mathrm {e}}^{25}-1}\,\left ({\mathrm {e}}^{4\,x}\,\left (-x^2+3\,x+10\right )-{\mathrm {e}}^{2\,x}\,\left (10\,x^2+50\,x+25\right )+\ln \relax (x)\,\left (2\,{\mathrm {e}}^{4\,x}-{\mathrm {e}}^{2\,x}\,\left (10\,x+5\right )\right )\right )}{{\mathrm {e}}^{4\,x}\,\left (x^2-4\,x+4\right )+{\mathrm {e}}^{2\,x}\,\left (10\,x-20\right )+25} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.64, size = 146, normalized size = 5.21 \begin {gather*} \frac {x}{e e^{e^{25}}} + \frac {- 5 x^{2} - 5 x \log {\relax (x )} - 20 x}{5 e x e^{e^{25}} + \left (e x^{2} e^{e^{25}} - 4 e x e^{e^{25}} + 4 e e^{e^{25}}\right ) e^{2 x} - 10 e e^{e^{25}}} + \frac {\log {\relax (x )}}{e e^{e^{25}}} + \frac {2 \log {\relax (x )}}{e x e^{e^{25}} - 2 e e^{e^{25}}} + \frac {12}{e x e^{e^{25}} - 2 e e^{e^{25}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________