Optimal. Leaf size=30 \[ x-\frac {1}{5} \log \left (\frac {1}{4} x \left (x-(-3+x+4 (x+\log (\log (5 x))))^4\right )\right ) \]
________________________________________________________________________________________
Rubi [B] time = 16.87, antiderivative size = 127, normalized size of antiderivative = 4.23, number of steps used = 8, number of rules used = 6, integrand size = 284, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.021, Rules used = {6741, 12, 6688, 6742, 43, 6684} \begin {gather*} -\frac {1}{5} \log \left (625 x^4-1500 x^3+2000 x^3 \log (\log (5 x))+1350 x^2+2400 x^2 \log ^2(\log (5 x))-3600 x^2 \log (\log (5 x))-541 x+256 \log ^4(\log (5 x))+1280 x \log ^3(\log (5 x))-768 \log ^3(\log (5 x))-2880 x \log ^2(\log (5 x))+864 \log ^2(\log (5 x))+2160 x \log (\log (5 x))-432 \log (\log (5 x))+81\right )+x-\frac {\log (x)}{5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 43
Rule 6684
Rule 6688
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {432-2160 x+3600 x^2-2000 x^3+\left (-81+1487 x-6755 x^2+12750 x^3-10625 x^4+3125 x^5\right ) \log (5 x)+\left (-1728+5760 x-4800 x^2+\left (432-6480 x+21600 x^2-26000 x^3+10000 x^4\right ) \log (5 x)\right ) \log (\log (5 x))+\left (2304-3840 x+\left (-864+10080 x-21600 x^2+12000 x^3\right ) \log (5 x)\right ) \log ^2(\log (5 x))+\left (-1024+\left (768-6400 x+6400 x^2\right ) \log (5 x)\right ) \log ^3(\log (5 x))+(-256+1280 x) \log (5 x) \log ^4(\log (5 x))}{5 x \log (5 x) \left (81-541 x+1350 x^2-1500 x^3+625 x^4-432 \log (\log (5 x))+2160 x \log (\log (5 x))-3600 x^2 \log (\log (5 x))+2000 x^3 \log (\log (5 x))+864 \log ^2(\log (5 x))-2880 x \log ^2(\log (5 x))+2400 x^2 \log ^2(\log (5 x))-768 \log ^3(\log (5 x))+1280 x \log ^3(\log (5 x))+256 \log ^4(\log (5 x))\right )} \, dx\\ &=\frac {1}{5} \int \frac {432-2160 x+3600 x^2-2000 x^3+\left (-81+1487 x-6755 x^2+12750 x^3-10625 x^4+3125 x^5\right ) \log (5 x)+\left (-1728+5760 x-4800 x^2+\left (432-6480 x+21600 x^2-26000 x^3+10000 x^4\right ) \log (5 x)\right ) \log (\log (5 x))+\left (2304-3840 x+\left (-864+10080 x-21600 x^2+12000 x^3\right ) \log (5 x)\right ) \log ^2(\log (5 x))+\left (-1024+\left (768-6400 x+6400 x^2\right ) \log (5 x)\right ) \log ^3(\log (5 x))+(-256+1280 x) \log (5 x) \log ^4(\log (5 x))}{x \log (5 x) \left (81-541 x+1350 x^2-1500 x^3+625 x^4-432 \log (\log (5 x))+2160 x \log (\log (5 x))-3600 x^2 \log (\log (5 x))+2000 x^3 \log (\log (5 x))+864 \log ^2(\log (5 x))-2880 x \log ^2(\log (5 x))+2400 x^2 \log ^2(\log (5 x))-768 \log ^3(\log (5 x))+1280 x \log ^3(\log (5 x))+256 \log ^4(\log (5 x))\right )} \, dx\\ &=\frac {1}{5} \int \frac {-16 (-3+5 x+4 \log (\log (5 x)))^3+\log (5 x) \left (-81+1487 x-6755 x^2+12750 x^3-10625 x^4+3125 x^5+16 (3-5 x)^2 \left (3-35 x+25 x^2\right ) \log (\log (5 x))+96 \left (-9+105 x-225 x^2+125 x^3\right ) \log ^2(\log (5 x))+256 \left (3-25 x+25 x^2\right ) \log ^3(\log (5 x))+256 (-1+5 x) \log ^4(\log (5 x))\right )}{x \log (5 x) \left (81-541 x+1350 x^2-1500 x^3+625 x^4+16 (-3+5 x)^3 \log (\log (5 x))+96 (3-5 x)^2 \log ^2(\log (5 x))+256 (-3+5 x) \log ^3(\log (5 x))+256 \log ^4(\log (5 x))\right )} \, dx\\ &=\frac {1}{5} \int \left (\frac {-1+5 x}{x}+\frac {432-2160 x+3600 x^2-2000 x^3+541 x \log (5 x)-2700 x^2 \log (5 x)+4500 x^3 \log (5 x)-2500 x^4 \log (5 x)-1728 \log (\log (5 x))+5760 x \log (\log (5 x))-4800 x^2 \log (\log (5 x))-2160 x \log (5 x) \log (\log (5 x))+7200 x^2 \log (5 x) \log (\log (5 x))-6000 x^3 \log (5 x) \log (\log (5 x))+2304 \log ^2(\log (5 x))-3840 x \log ^2(\log (5 x))+2880 x \log (5 x) \log ^2(\log (5 x))-4800 x^2 \log (5 x) \log ^2(\log (5 x))-1024 \log ^3(\log (5 x))-1280 x \log (5 x) \log ^3(\log (5 x))}{x \log (5 x) \left (81-541 x+1350 x^2-1500 x^3+625 x^4-432 \log (\log (5 x))+2160 x \log (\log (5 x))-3600 x^2 \log (\log (5 x))+2000 x^3 \log (\log (5 x))+864 \log ^2(\log (5 x))-2880 x \log ^2(\log (5 x))+2400 x^2 \log ^2(\log (5 x))-768 \log ^3(\log (5 x))+1280 x \log ^3(\log (5 x))+256 \log ^4(\log (5 x))\right )}\right ) \, dx\\ &=\frac {1}{5} \int \frac {-1+5 x}{x} \, dx+\frac {1}{5} \int \frac {432-2160 x+3600 x^2-2000 x^3+541 x \log (5 x)-2700 x^2 \log (5 x)+4500 x^3 \log (5 x)-2500 x^4 \log (5 x)-1728 \log (\log (5 x))+5760 x \log (\log (5 x))-4800 x^2 \log (\log (5 x))-2160 x \log (5 x) \log (\log (5 x))+7200 x^2 \log (5 x) \log (\log (5 x))-6000 x^3 \log (5 x) \log (\log (5 x))+2304 \log ^2(\log (5 x))-3840 x \log ^2(\log (5 x))+2880 x \log (5 x) \log ^2(\log (5 x))-4800 x^2 \log (5 x) \log ^2(\log (5 x))-1024 \log ^3(\log (5 x))-1280 x \log (5 x) \log ^3(\log (5 x))}{x \log (5 x) \left (81-541 x+1350 x^2-1500 x^3+625 x^4-432 \log (\log (5 x))+2160 x \log (\log (5 x))-3600 x^2 \log (\log (5 x))+2000 x^3 \log (\log (5 x))+864 \log ^2(\log (5 x))-2880 x \log ^2(\log (5 x))+2400 x^2 \log ^2(\log (5 x))-768 \log ^3(\log (5 x))+1280 x \log ^3(\log (5 x))+256 \log ^4(\log (5 x))\right )} \, dx\\ &=-\frac {1}{5} \log \left (81-541 x+1350 x^2-1500 x^3+625 x^4-432 \log (\log (5 x))+2160 x \log (\log (5 x))-3600 x^2 \log (\log (5 x))+2000 x^3 \log (\log (5 x))+864 \log ^2(\log (5 x))-2880 x \log ^2(\log (5 x))+2400 x^2 \log ^2(\log (5 x))-768 \log ^3(\log (5 x))+1280 x \log ^3(\log (5 x))+256 \log ^4(\log (5 x))\right )+\frac {1}{5} \int \left (5-\frac {1}{x}\right ) \, dx\\ &=x-\frac {\log (x)}{5}-\frac {1}{5} \log \left (81-541 x+1350 x^2-1500 x^3+625 x^4-432 \log (\log (5 x))+2160 x \log (\log (5 x))-3600 x^2 \log (\log (5 x))+2000 x^3 \log (\log (5 x))+864 \log ^2(\log (5 x))-2880 x \log ^2(\log (5 x))+2400 x^2 \log ^2(\log (5 x))-768 \log ^3(\log (5 x))+1280 x \log ^3(\log (5 x))+256 \log ^4(\log (5 x))\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.27, size = 131, normalized size = 4.37 \begin {gather*} \frac {1}{5} \left (5 x-\log (5 x)-\log \left (405-2705 x+6750 x^2-7500 x^3+3125 x^4-2160 \log (\log (5 x))+10800 x \log (\log (5 x))-18000 x^2 \log (\log (5 x))+10000 x^3 \log (\log (5 x))+4320 \log ^2(\log (5 x))-14400 x \log ^2(\log (5 x))+12000 x^2 \log ^2(\log (5 x))-3840 \log ^3(\log (5 x))+6400 x \log ^3(\log (5 x))+1280 \log ^4(\log (5 x))\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.50, size = 95, normalized size = 3.17 \begin {gather*} x - \frac {1}{5} \, \log \left (625 \, x^{4} + 256 \, {\left (5 \, x - 3\right )} \log \left (\log \left (5 \, x\right )\right )^{3} + 256 \, \log \left (\log \left (5 \, x\right )\right )^{4} - 1500 \, x^{3} + 96 \, {\left (25 \, x^{2} - 30 \, x + 9\right )} \log \left (\log \left (5 \, x\right )\right )^{2} + 1350 \, x^{2} + 16 \, {\left (125 \, x^{3} - 225 \, x^{2} + 135 \, x - 27\right )} \log \left (\log \left (5 \, x\right )\right ) - 541 \, x + 81\right ) - \frac {1}{5} \, \log \left (5 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.60, size = 123, normalized size = 4.10 \begin {gather*} x - \frac {1}{5} \, \log \left (625 \, x^{4} + 2000 \, x^{3} \log \left (\log \left (5 \, x\right )\right ) + 2400 \, x^{2} \log \left (\log \left (5 \, x\right )\right )^{2} + 1280 \, x \log \left (\log \left (5 \, x\right )\right )^{3} + 256 \, \log \left (\log \left (5 \, x\right )\right )^{4} - 1500 \, x^{3} - 3600 \, x^{2} \log \left (\log \left (5 \, x\right )\right ) - 2880 \, x \log \left (\log \left (5 \, x\right )\right )^{2} - 768 \, \log \left (\log \left (5 \, x\right )\right )^{3} + 1350 \, x^{2} + 2160 \, x \log \left (\log \left (5 \, x\right )\right ) + 864 \, \log \left (\log \left (5 \, x\right )\right )^{2} - 541 \, x - 432 \, \log \left (\log \left (5 \, x\right )\right ) + 81\right ) - \frac {1}{5} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.06, size = 89, normalized size = 2.97
method | result | size |
risch | \(x -\frac {\ln \relax (x )}{5}-\frac {\ln \left (\ln \left (\ln \left (5 x \right )\right )^{4}+\left (5 x -3\right ) \ln \left (\ln \left (5 x \right )\right )^{3}+\left (\frac {75}{8} x^{2}-\frac {45}{4} x +\frac {27}{8}\right ) \ln \left (\ln \left (5 x \right )\right )^{2}+\left (\frac {125}{16} x^{3}-\frac {225}{16} x^{2}+\frac {135}{16} x -\frac {27}{16}\right ) \ln \left (\ln \left (5 x \right )\right )+\frac {625 x^{4}}{256}-\frac {375 x^{3}}{64}+\frac {675 x^{2}}{128}-\frac {541 x}{256}+\frac {81}{256}\right )}{5}\) | \(89\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 94, normalized size = 3.13 \begin {gather*} x - \frac {1}{5} \, \log \left (\frac {625}{256} \, x^{4} + {\left (5 \, x - 3\right )} \log \left (\log \relax (5) + \log \relax (x)\right )^{3} + \log \left (\log \relax (5) + \log \relax (x)\right )^{4} - \frac {375}{64} \, x^{3} + \frac {3}{8} \, {\left (25 \, x^{2} - 30 \, x + 9\right )} \log \left (\log \relax (5) + \log \relax (x)\right )^{2} + \frac {675}{128} \, x^{2} + \frac {1}{16} \, {\left (125 \, x^{3} - 225 \, x^{2} + 135 \, x - 27\right )} \log \left (\log \relax (5) + \log \relax (x)\right ) - \frac {541}{256} \, x + \frac {81}{256}\right ) - \frac {1}{5} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {\ln \left (5\,x\right )\,\left (3125\,x^5-10625\,x^4+12750\,x^3-6755\,x^2+1487\,x-81\right )-2160\,x+3600\,x^2-2000\,x^3+{\ln \left (\ln \left (5\,x\right )\right )}^3\,\left (\ln \left (5\,x\right )\,\left (6400\,x^2-6400\,x+768\right )-1024\right )+{\ln \left (\ln \left (5\,x\right )\right )}^2\,\left (\ln \left (5\,x\right )\,\left (12000\,x^3-21600\,x^2+10080\,x-864\right )-3840\,x+2304\right )+\ln \left (\ln \left (5\,x\right )\right )\,\left (5760\,x+\ln \left (5\,x\right )\,\left (10000\,x^4-26000\,x^3+21600\,x^2-6480\,x+432\right )-4800\,x^2-1728\right )+\ln \left (5\,x\right )\,{\ln \left (\ln \left (5\,x\right )\right )}^4\,\left (1280\,x-256\right )+432}{1280\,x\,\ln \left (5\,x\right )\,{\ln \left (\ln \left (5\,x\right )\right )}^4-\ln \left (5\,x\right )\,\left (3840\,x-6400\,x^2\right )\,{\ln \left (\ln \left (5\,x\right )\right )}^3+\ln \left (5\,x\right )\,\left (12000\,x^3-14400\,x^2+4320\,x\right )\,{\ln \left (\ln \left (5\,x\right )\right )}^2-\ln \left (5\,x\right )\,\left (-10000\,x^4+18000\,x^3-10800\,x^2+2160\,x\right )\,\ln \left (\ln \left (5\,x\right )\right )+\ln \left (5\,x\right )\,\left (3125\,x^5-7500\,x^4+6750\,x^3-2705\,x^2+405\,x\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.92, size = 112, normalized size = 3.73 \begin {gather*} x - \frac {\log {\relax (x )}}{5} - \frac {\log {\left (\frac {625 x^{4}}{256} - \frac {375 x^{3}}{64} + \frac {675 x^{2}}{128} - \frac {541 x}{256} + \left (5 x - 3\right ) \log {\left (\log {\left (5 x \right )} \right )}^{3} + \left (\frac {75 x^{2}}{8} - \frac {45 x}{4} + \frac {27}{8}\right ) \log {\left (\log {\left (5 x \right )} \right )}^{2} + \left (\frac {125 x^{3}}{16} - \frac {225 x^{2}}{16} + \frac {135 x}{16} - \frac {27}{16}\right ) \log {\left (\log {\left (5 x \right )} \right )} + \log {\left (\log {\left (5 x \right )} \right )}^{4} + \frac {81}{256} \right )}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________