Optimal. Leaf size=28 \[ \frac {\log ^2\left (4 \left (x-\frac {1}{2+x}\right )\right )}{\left (3+e^{4 x}-\log (x)\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [F] time = 0.32, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (-30 x-24 x^2-6 x^3+e^{4 x} \left (-10 x-8 x^2-2 x^3\right )+\left (10 x+8 x^2+2 x^3\right ) \log (x)\right ) \log \left (\frac {-4+8 x+4 x^2}{2+x}\right )+\left (4-6 x-8 x^2-2 x^3+e^{4 x} \left (-16 x+24 x^2+32 x^3+8 x^4\right )\right ) \log ^2\left (\frac {-4+8 x+4 x^2}{2+x}\right )}{54 x-81 x^2-108 x^3-27 x^4+e^{4 x} \left (54 x-81 x^2-108 x^3-27 x^4\right )+e^{8 x} \left (18 x-27 x^2-36 x^3-9 x^4\right )+e^{12 x} \left (2 x-3 x^2-4 x^3-x^4\right )+\left (-54 x+81 x^2+108 x^3+27 x^4+e^{8 x} \left (-6 x+9 x^2+12 x^3+3 x^4\right )+e^{4 x} \left (-36 x+54 x^2+72 x^3+18 x^4\right )\right ) \log (x)+\left (18 x-27 x^2-36 x^3-9 x^4+e^{4 x} \left (6 x-9 x^2-12 x^3-3 x^4\right )\right ) \log ^2(x)+\left (-2 x+3 x^2+4 x^3+x^4\right ) \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 52, normalized size = 1.86 \begin {gather*} -\frac {\log \left (\frac {4 \, {\left (x^{2} + 2 \, x - 1\right )}}{x + 2}\right )^{2}}{2 \, {\left (e^{\left (4 \, x\right )} + 3\right )} \log \relax (x) - \log \relax (x)^{2} - e^{\left (8 \, x\right )} - 6 \, e^{\left (4 \, x\right )} - 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.91, size = 96, normalized size = 3.43 \begin {gather*} -\frac {4 \, \log \relax (2)^{2} + 4 \, \log \relax (2) \log \left (x^{2} + 2 \, x - 1\right ) + \log \left (x^{2} + 2 \, x - 1\right )^{2} - 4 \, \log \relax (2) \log \left (x + 2\right ) - 2 \, \log \left (x^{2} + 2 \, x - 1\right ) \log \left (x + 2\right ) + \log \left (x + 2\right )^{2}}{2 \, e^{\left (4 \, x\right )} \log \relax (x) - \log \relax (x)^{2} - e^{\left (8 \, x\right )} - 6 \, e^{\left (4 \, x\right )} + 6 \, \log \relax (x) - 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.62, size = 870, normalized size = 31.07
method | result | size |
risch | \(\frac {\ln \left (x^{2}+2 x -1\right )^{2}}{\left (3+{\mathrm e}^{4 x}-\ln \relax (x )\right )^{2}}+\frac {\left (i \pi \,\mathrm {csgn}\left (i \left (x^{2}+2 x -1\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+2 x -1\right )}{2+x}\right )^{2}-i \pi \,\mathrm {csgn}\left (i \left (x^{2}+2 x -1\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+2 x -1\right )}{2+x}\right ) \mathrm {csgn}\left (\frac {i}{2+x}\right )+i \pi \mathrm {csgn}\left (\frac {i \left (x^{2}+2 x -1\right )}{2+x}\right )^{2} \mathrm {csgn}\left (\frac {i}{2+x}\right )-i \pi \mathrm {csgn}\left (\frac {i \left (x^{2}+2 x -1\right )}{2+x}\right )^{3}+4 \ln \relax (2)-2 \ln \left (2+x \right )\right ) \ln \left (x^{2}+2 x -1\right )}{\left (3+{\mathrm e}^{4 x}-\ln \relax (x )\right )^{2}}+\frac {16 \ln \relax (2)^{2}+4 \ln \left (2+x \right )^{2}-\pi ^{2} \mathrm {csgn}\left (i \left (x^{2}+2 x -1\right )\right )^{2} \mathrm {csgn}\left (\frac {i \left (x^{2}+2 x -1\right )}{2+x}\right )^{2} \mathrm {csgn}\left (\frac {i}{2+x}\right )^{2}-16 \ln \relax (2) \ln \left (2+x \right )+4 i \ln \left (2+x \right ) \pi \,\mathrm {csgn}\left (i \left (x^{2}+2 x -1\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+2 x -1\right )}{2+x}\right ) \mathrm {csgn}\left (\frac {i}{2+x}\right )+8 i \ln \relax (2) \pi \,\mathrm {csgn}\left (i \left (x^{2}+2 x -1\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+2 x -1\right )}{2+x}\right )^{2}+2 \pi ^{2} \mathrm {csgn}\left (i \left (x^{2}+2 x -1\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+2 x -1\right )}{2+x}\right )^{3} \mathrm {csgn}\left (\frac {i}{2+x}\right )^{2}+2 \pi ^{2} \mathrm {csgn}\left (i \left (x^{2}+2 x -1\right )\right )^{2} \mathrm {csgn}\left (\frac {i \left (x^{2}+2 x -1\right )}{2+x}\right )^{3} \mathrm {csgn}\left (\frac {i}{2+x}\right )-4 \pi ^{2} \mathrm {csgn}\left (i \left (x^{2}+2 x -1\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+2 x -1\right )}{2+x}\right )^{4} \mathrm {csgn}\left (\frac {i}{2+x}\right )-8 i \ln \relax (2) \pi \mathrm {csgn}\left (\frac {i \left (x^{2}+2 x -1\right )}{2+x}\right )^{3}+8 i \ln \relax (2) \pi \mathrm {csgn}\left (\frac {i \left (x^{2}+2 x -1\right )}{2+x}\right )^{2} \mathrm {csgn}\left (\frac {i}{2+x}\right )-8 i \ln \relax (2) \pi \,\mathrm {csgn}\left (i \left (x^{2}+2 x -1\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+2 x -1\right )}{2+x}\right ) \mathrm {csgn}\left (\frac {i}{2+x}\right )-4 i \ln \left (2+x \right ) \pi \,\mathrm {csgn}\left (i \left (x^{2}+2 x -1\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+2 x -1\right )}{2+x}\right )^{2}+4 i \ln \left (2+x \right ) \pi \mathrm {csgn}\left (\frac {i \left (x^{2}+2 x -1\right )}{2+x}\right )^{3}-4 i \ln \left (2+x \right ) \pi \mathrm {csgn}\left (\frac {i \left (x^{2}+2 x -1\right )}{2+x}\right )^{2} \mathrm {csgn}\left (\frac {i}{2+x}\right )+2 \pi ^{2} \mathrm {csgn}\left (\frac {i \left (x^{2}+2 x -1\right )}{2+x}\right )^{5} \mathrm {csgn}\left (\frac {i}{2+x}\right )-\pi ^{2} \mathrm {csgn}\left (\frac {i \left (x^{2}+2 x -1\right )}{2+x}\right )^{6}-\pi ^{2} \mathrm {csgn}\left (\frac {i \left (x^{2}+2 x -1\right )}{2+x}\right )^{4} \mathrm {csgn}\left (\frac {i}{2+x}\right )^{2}-\pi ^{2} \mathrm {csgn}\left (i \left (x^{2}+2 x -1\right )\right )^{2} \mathrm {csgn}\left (\frac {i \left (x^{2}+2 x -1\right )}{2+x}\right )^{4}+2 \pi ^{2} \mathrm {csgn}\left (i \left (x^{2}+2 x -1\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+2 x -1\right )}{2+x}\right )^{5}}{4 \left (3+{\mathrm e}^{4 x}-\ln \relax (x )\right )^{2}}\) | \(870\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.21, size = 86, normalized size = 3.07 \begin {gather*} -\frac {4 \, \log \relax (2)^{2} + 2 \, {\left (2 \, \log \relax (2) - \log \left (x + 2\right )\right )} \log \left (x^{2} + 2 \, x - 1\right ) + \log \left (x^{2} + 2 \, x - 1\right )^{2} - 4 \, \log \relax (2) \log \left (x + 2\right ) + \log \left (x + 2\right )^{2}}{2 \, {\left (\log \relax (x) - 3\right )} e^{\left (4 \, x\right )} - \log \relax (x)^{2} - e^{\left (8 \, x\right )} + 6 \, \log \relax (x) - 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.87, size = 50, normalized size = 1.79 \begin {gather*} \frac {{\ln \left (\frac {4\,x^2+8\,x-4}{x+2}\right )}^2}{{\ln \relax (x)}^2+\left (-2\,{\mathrm {e}}^{4\,x}-6\right )\,\ln \relax (x)+6\,{\mathrm {e}}^{4\,x}+{\mathrm {e}}^{8\,x}+9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.76, size = 44, normalized size = 1.57 \begin {gather*} \frac {\log {\left (\frac {4 x^{2} + 8 x - 4}{x + 2} \right )}^{2}}{\left (6 - 2 \log {\relax (x )}\right ) e^{4 x} + e^{8 x} + \log {\relax (x )}^{2} - 6 \log {\relax (x )} + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________