Optimal. Leaf size=22 \[ \frac {1215 e^{-16-12 (-1+x)+4 x} (1-x)}{x^4} \]
________________________________________________________________________________________
Rubi [A] time = 0.23, antiderivative size = 25, normalized size of antiderivative = 1.14, number of steps used = 14, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {2199, 2177, 2178} \begin {gather*} \frac {1215 e^{-8 x-4}}{x^4}-\frac {1215 e^{-8 x-4}}{x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2177
Rule 2178
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {4860 e^{-4-8 x}}{x^5}-\frac {6075 e^{-4-8 x}}{x^4}+\frac {9720 e^{-4-8 x}}{x^3}\right ) \, dx\\ &=-\left (4860 \int \frac {e^{-4-8 x}}{x^5} \, dx\right )-6075 \int \frac {e^{-4-8 x}}{x^4} \, dx+9720 \int \frac {e^{-4-8 x}}{x^3} \, dx\\ &=\frac {1215 e^{-4-8 x}}{x^4}+\frac {2025 e^{-4-8 x}}{x^3}-\frac {4860 e^{-4-8 x}}{x^2}+9720 \int \frac {e^{-4-8 x}}{x^4} \, dx+16200 \int \frac {e^{-4-8 x}}{x^3} \, dx-38880 \int \frac {e^{-4-8 x}}{x^2} \, dx\\ &=\frac {1215 e^{-4-8 x}}{x^4}-\frac {1215 e^{-4-8 x}}{x^3}-\frac {12960 e^{-4-8 x}}{x^2}+\frac {38880 e^{-4-8 x}}{x}-25920 \int \frac {e^{-4-8 x}}{x^3} \, dx-64800 \int \frac {e^{-4-8 x}}{x^2} \, dx+311040 \int \frac {e^{-4-8 x}}{x} \, dx\\ &=\frac {1215 e^{-4-8 x}}{x^4}-\frac {1215 e^{-4-8 x}}{x^3}+\frac {103680 e^{-4-8 x}}{x}+\frac {311040 \text {Ei}(-8 x)}{e^4}+103680 \int \frac {e^{-4-8 x}}{x^2} \, dx+518400 \int \frac {e^{-4-8 x}}{x} \, dx\\ &=\frac {1215 e^{-4-8 x}}{x^4}-\frac {1215 e^{-4-8 x}}{x^3}+\frac {829440 \text {Ei}(-8 x)}{e^4}-829440 \int \frac {e^{-4-8 x}}{x} \, dx\\ &=\frac {1215 e^{-4-8 x}}{x^4}-\frac {1215 e^{-4-8 x}}{x^3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 15, normalized size = 0.68 \begin {gather*} -\frac {1215 e^{-4-8 x} (-1+x)}{x^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 14, normalized size = 0.64 \begin {gather*} -\frac {1215 \, {\left (x - 1\right )} e^{\left (-8 \, x - 4\right )}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 20, normalized size = 0.91 \begin {gather*} -\frac {1215 \, {\left (x e^{\left (-8 \, x\right )} - e^{\left (-8 \, x\right )}\right )} e^{\left (-4\right )}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 15, normalized size = 0.68
method | result | size |
risch | \(-\frac {1215 \left (x -1\right ) {\mathrm e}^{-8 x -4}}{x^{4}}\) | \(15\) |
gosper | \(-\frac {1215 \left (x -1\right ) {\mathrm e}^{-8 x -4}}{x^{4}}\) | \(17\) |
norman | \(\frac {\left (1215-1215 x \right ) {\mathrm e}^{-8 x -4}}{x^{4}}\) | \(18\) |
derivativedivides | \(\frac {405 \,{\mathrm e}^{-8 x -4} \left (32 \left (2 x +1\right )^{3}-104 \left (2 x +1\right )^{2}+232 x +69\right )}{8 x^{4}}+\frac {15795 \,{\mathrm e}^{-8 x -4}}{8 x^{4}}-\frac {405 \,{\mathrm e}^{-8 x -4} \left (8 \left (2 x +1\right )^{3}-26 \left (2 x +1\right )^{2}+64 x +21\right )}{2 x^{4}}\) | \(81\) |
default | \(\frac {405 \,{\mathrm e}^{-8 x -4} \left (32 \left (2 x +1\right )^{3}-104 \left (2 x +1\right )^{2}+232 x +69\right )}{8 x^{4}}+\frac {15795 \,{\mathrm e}^{-8 x -4}}{8 x^{4}}-\frac {405 \,{\mathrm e}^{-8 x -4} \left (8 \left (2 x +1\right )^{3}-26 \left (2 x +1\right )^{2}+64 x +21\right )}{2 x^{4}}\) | \(81\) |
meijerg | \(622080 \,{\mathrm e}^{-8 x -12+8 x \,{\mathrm e}^{-4}} \left (-\frac {{\mathrm e}^{8}}{128 x^{2}}+\frac {{\mathrm e}^{4}}{8 x}-\frac {11}{4}+\frac {\ln \relax (x )}{2}+\frac {3 \ln \relax (2)}{2}+\frac {{\mathrm e}^{8} \left (576 x^{2} {\mathrm e}^{-8}-96 x \,{\mathrm e}^{-4}+6\right )}{768 x^{2}}-\frac {{\mathrm e}^{8-8 x \,{\mathrm e}^{-4}} \left (3-24 x \,{\mathrm e}^{-4}\right )}{384 x^{2}}-\frac {\ln \left (8 x \,{\mathrm e}^{-4}\right )}{2}-\frac {\expIntegralEi \left (1, 8 x \,{\mathrm e}^{-4}\right )}{2}\right )-3110400 \,{\mathrm e}^{-8 x -16+8 x \,{\mathrm e}^{-4}} \left (-\frac {{\mathrm e}^{12}}{1536 x^{3}}+\frac {{\mathrm e}^{8}}{128 x^{2}}-\frac {{\mathrm e}^{4}}{16 x}+\frac {35}{36}-\frac {\ln \relax (x )}{6}-\frac {\ln \relax (2)}{2}+\frac {{\mathrm e}^{12} \left (-11264 x^{3} {\mathrm e}^{-12}+2304 x^{2} {\mathrm e}^{-8}-288 x \,{\mathrm e}^{-4}+24\right )}{36864 x^{3}}-\frac {{\mathrm e}^{12-8 x \,{\mathrm e}^{-4}} \left (256 x^{2} {\mathrm e}^{-8}-32 x \,{\mathrm e}^{-4}+8\right )}{12288 x^{3}}+\frac {\ln \left (8 x \,{\mathrm e}^{-4}\right )}{6}+\frac {\expIntegralEi \left (1, 8 x \,{\mathrm e}^{-4}\right )}{6}\right )-19906560 \,{\mathrm e}^{8 x \,{\mathrm e}^{-4}-20-8 x} \left (-\frac {{\mathrm e}^{16}}{16384 x^{4}}+\frac {{\mathrm e}^{12}}{1536 x^{3}}-\frac {{\mathrm e}^{8}}{256 x^{2}}+\frac {{\mathrm e}^{4}}{48 x}-\frac {73}{288}+\frac {\ln \relax (x )}{24}+\frac {\ln \relax (2)}{8}+\frac {{\mathrm e}^{16} \left (512000 x^{4} {\mathrm e}^{-16}-122880 x^{3} {\mathrm e}^{-12}+23040 x^{2} {\mathrm e}^{-8}-3840 x \,{\mathrm e}^{-4}+360\right )}{5898240 x^{4}}-\frac {{\mathrm e}^{16-8 x \,{\mathrm e}^{-4}} \left (-2560 x^{3} {\mathrm e}^{-12}+320 x^{2} {\mathrm e}^{-8}-80 x \,{\mathrm e}^{-4}+30\right )}{491520 x^{4}}-\frac {\ln \left (8 x \,{\mathrm e}^{-4}\right )}{24}-\frac {\expIntegralEi \left (1, 8 x \,{\mathrm e}^{-4}\right )}{24}\right )\) | \(350\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.38, size = 28, normalized size = 1.27 \begin {gather*} -622080 \, e^{\left (-4\right )} \Gamma \left (-2, 8 \, x\right ) + 3110400 \, e^{\left (-4\right )} \Gamma \left (-3, 8 \, x\right ) + 19906560 \, e^{\left (-4\right )} \Gamma \left (-4, 8 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.40, size = 14, normalized size = 0.64 \begin {gather*} -\frac {1215\,{\mathrm {e}}^{-8\,x-4}\,\left (x-1\right )}{x^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 15, normalized size = 0.68 \begin {gather*} \frac {\left (1215 - 1215 x\right ) e^{- 8 x - 4}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________