Optimal. Leaf size=29 \[ 1+e^{3+e^{2 (10+x)^2}-\frac {\log \left (-2+e^2+e^5\right )}{x}} \]
________________________________________________________________________________________
Rubi [A] time = 0.48, antiderivative size = 39, normalized size of antiderivative = 1.34, number of steps used = 1, number of rules used = 1, integrand size = 73, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.014, Rules used = {6706} \begin {gather*} e^{\frac {e^{2 x^2+40 x+200} x+3 x}{x}} \left (-2+e^2+e^5\right )^{-1/x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^{\frac {3 x+e^{200+40 x+2 x^2} x}{x}} \left (-2+e^2+e^5\right )^{-1/x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 28, normalized size = 0.97 \begin {gather*} e^{3+e^{2 (10+x)^2}} \left (-2+e^2+e^5\right )^{-1/x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 31, normalized size = 1.07 \begin {gather*} e^{\left (\frac {x e^{\left (2 \, x^{2} + 40 \, x + 200\right )} + 3 \, x - \log \left (e^{5} + e^{2} - 2\right )}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 26, normalized size = 0.90 \begin {gather*} e^{\left (-\frac {\log \left (e^{5} + e^{2} - 2\right )}{x} + e^{\left (2 \, x^{2} + 40 \, x + 200\right )} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 32, normalized size = 1.10
method | result | size |
norman | \({\mathrm e}^{\frac {-\ln \left ({\mathrm e}^{5}+{\mathrm e}^{2}-2\right )+x \,{\mathrm e}^{2 x^{2}+40 x +200}+3 x}{x}}\) | \(32\) |
risch | \(\left ({\mathrm e}-1\right )^{-\frac {1}{x}} \left ({\mathrm e}^{4}+{\mathrm e}^{3}+{\mathrm e}^{2}+2 \,{\mathrm e}+2\right )^{-\frac {1}{x}} {\mathrm e}^{{\mathrm e}^{2 \left (x +10\right )^{2}}+3}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 42, normalized size = 1.45 \begin {gather*} e^{\left (-\frac {\log \left (e^{4} + e^{3} + e^{2} + 2 \, e + 2\right )}{x} - \frac {\log \left (e - 1\right )}{x} + e^{\left (2 \, x^{2} + 40 \, x + 200\right )} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.59, size = 29, normalized size = 1.00 \begin {gather*} \frac {{\mathrm {e}}^{{\mathrm {e}}^{40\,x}\,{\mathrm {e}}^{200}\,{\mathrm {e}}^{2\,x^2}}\,{\mathrm {e}}^3}{{\left ({\mathrm {e}}^2+{\mathrm {e}}^5-2\right )}^{1/x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 29, normalized size = 1.00 \begin {gather*} e^{\frac {x e^{2 x^{2} + 40 x + 200} + 3 x - \log {\left (-2 + e^{2} + e^{5} \right )}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________