Optimal. Leaf size=19 \[ \frac {168 e^{-1+x}}{25 x \left (3+x^2\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.14, antiderivative size = 26, normalized size of antiderivative = 1.37, number of steps used = 3, number of rules used = 3, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {1594, 28, 2288} \begin {gather*} \frac {168 e^{x-1} \left (x^3+3 x\right )}{25 x^2 \left (x^2+3\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 28
Rule 1594
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-1+x} \left (-504+504 x-504 x^2+168 x^3\right )}{x^2 \left (225+150 x^2+25 x^4\right )} \, dx\\ &=25 \int \frac {e^{-1+x} \left (-504+504 x-504 x^2+168 x^3\right )}{x^2 \left (75+25 x^2\right )^2} \, dx\\ &=\frac {168 e^{-1+x} \left (3 x+x^3\right )}{25 x^2 \left (3+x^2\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 18, normalized size = 0.95 \begin {gather*} \frac {168 e^{-1+x}}{25 \left (3 x+x^3\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 15, normalized size = 0.79 \begin {gather*} \frac {168 \, e^{\left (x - 1\right )}}{25 \, {\left (x^{3} + 3 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 18, normalized size = 0.95 \begin {gather*} \frac {168 \, e^{x}}{25 \, {\left (x^{3} e + 3 \, x e\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 17, normalized size = 0.89
method | result | size |
risch | \(\frac {168 \,{\mathrm e}^{x -1}}{25 \left (x^{2}+3\right ) x}\) | \(17\) |
gosper | \(\frac {168 \,{\mathrm e}^{x -1}}{25 \left (x^{2}+3\right ) x}\) | \(21\) |
norman | \(\frac {168 \,{\mathrm e}^{x -1}}{25 \left (x^{2}+3\right ) x}\) | \(21\) |
derivativedivides | \(-\frac {56 \,{\mathrm e}^{x -1} \left (\left (1-x \right )^{2}+1+2 x \right )}{25 \left (\left (1-x \right )^{3}-3 \left (1-x \right )^{2}+2-6 x \right )}+\frac {56 \,{\mathrm e}^{x -1} \left (1-x \right ) \left (-x -1\right )}{25 \left (\left (1-x \right )^{3}-3 \left (1-x \right )^{2}+2-6 x \right )}\) | \(82\) |
default | \(-\frac {56 \,{\mathrm e}^{x -1} \left (\left (1-x \right )^{2}+1+2 x \right )}{25 \left (\left (1-x \right )^{3}-3 \left (1-x \right )^{2}+2-6 x \right )}+\frac {56 \,{\mathrm e}^{x -1} \left (1-x \right ) \left (-x -1\right )}{25 \left (\left (1-x \right )^{3}-3 \left (1-x \right )^{2}+2-6 x \right )}\) | \(82\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 18, normalized size = 0.95 \begin {gather*} \frac {168 \, e^{x}}{25 \, {\left (x^{3} e + 3 \, x e\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.36, size = 17, normalized size = 0.89 \begin {gather*} \frac {168\,{\mathrm {e}}^{-1}\,{\mathrm {e}}^x}{25\,\left (x^3+3\,x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 14, normalized size = 0.74 \begin {gather*} \frac {168 e^{x - 1}}{25 x^{3} + 75 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________