Optimal. Leaf size=36 \[ e^{2+e^{-x} \left (\frac {3}{x}+\frac {4}{5} \left (-\frac {5}{e^x+x}+\log ^2(x)\right )\right )} x \]
________________________________________________________________________________________
Rubi [F] time = 50.21, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-5 x+10 e^{2 x} x+e^x \left (15+10 x^2\right )+\left (4 e^x x+4 x^2\right ) \log ^2(x)}{5 e^{2 x} x+5 e^x x^2}\right ) \left (5 e^{3 x} x+5 x^2+5 x^3+e^{2 x} \left (-15-15 x+10 x^2\right )+e^x \left (-30 x+10 x^2+5 x^3\right )+\left (8 e^{2 x} x+16 e^x x^2+8 x^3\right ) \log (x)+\left (-4 e^{2 x} x^2-8 e^x x^3-4 x^4\right ) \log ^2(x)\right )}{5 e^{3 x} x+10 e^{2 x} x^2+5 e^x x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) \left (5 \left (e^{3 x} x+x^2 (1+x)+e^x x \left (-6+2 x+x^2\right )+e^{2 x} \left (-3-3 x+2 x^2\right )\right )+8 x \left (e^x+x\right )^2 \log (x)-4 x^2 \left (e^x+x\right )^2 \log ^2(x)\right )}{5 x \left (e^x+x\right )^2} \, dx\\ &=\frac {1}{5} \int \frac {\exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) \left (5 \left (e^{3 x} x+x^2 (1+x)+e^x x \left (-6+2 x+x^2\right )+e^{2 x} \left (-3-3 x+2 x^2\right )\right )+8 x \left (e^x+x\right )^2 \log (x)-4 x^2 \left (e^x+x\right )^2 \log ^2(x)\right )}{x \left (e^x+x\right )^2} \, dx\\ &=\frac {1}{5} \int \left (5 \exp \left (x+\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right )-\frac {20 \exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) (-1+x) x}{\left (e^x+x\right )^2}+\frac {40 \exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) x}{e^x+x}+\frac {\exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) \left (-15-15 x+8 x \log (x)-4 x^2 \log ^2(x)\right )}{x}\right ) \, dx\\ &=\frac {1}{5} \int \frac {\exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) \left (-15-15 x+8 x \log (x)-4 x^2 \log ^2(x)\right )}{x} \, dx-4 \int \frac {\exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) (-1+x) x}{\left (e^x+x\right )^2} \, dx+8 \int \frac {\exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) x}{e^x+x} \, dx+\int \exp \left (x+\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) \, dx\\ &=\frac {1}{5} \int \left (-\frac {15 \exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) (1+x)}{x}+8 \exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) \log (x)-4 \exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) x \log ^2(x)\right ) \, dx-4 \int \left (-\frac {\exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) x}{\left (e^x+x\right )^2}+\frac {\exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) x^2}{\left (e^x+x\right )^2}\right ) \, dx+8 \int \frac {\exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) x}{e^x+x} \, dx+\int \exp \left (x+\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) \, dx\\ &=-\left (\frac {4}{5} \int \exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) x \log ^2(x) \, dx\right )+\frac {8}{5} \int \exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) \log (x) \, dx-3 \int \frac {\exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) (1+x)}{x} \, dx+4 \int \frac {\exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) x}{\left (e^x+x\right )^2} \, dx-4 \int \frac {\exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) x^2}{\left (e^x+x\right )^2} \, dx+8 \int \frac {\exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) x}{e^x+x} \, dx+\int \exp \left (x+\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) \, dx\\ &=-\left (\frac {4}{5} \int \exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) x \log ^2(x) \, dx\right )+\frac {8}{5} \int \exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) \log (x) \, dx-3 \int \left (\exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right )+\frac {\exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right )}{x}\right ) \, dx+4 \int \frac {\exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) x}{\left (e^x+x\right )^2} \, dx-4 \int \frac {\exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) x^2}{\left (e^x+x\right )^2} \, dx+8 \int \frac {\exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) x}{e^x+x} \, dx+\int \exp \left (x+\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) \, dx\\ &=-\left (\frac {4}{5} \int \exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) x \log ^2(x) \, dx\right )+\frac {8}{5} \int \exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) \log (x) \, dx-3 \int \exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) \, dx-3 \int \frac {\exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right )}{x} \, dx+4 \int \frac {\exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) x}{\left (e^x+x\right )^2} \, dx-4 \int \frac {\exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) x^2}{\left (e^x+x\right )^2} \, dx+8 \int \frac {\exp \left (\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) x}{e^x+x} \, dx+\int \exp \left (x+\frac {1}{5} e^{-x} \left (-\frac {5 \left (x+e^{2 x} (-2+x) x+e^x \left (-3-2 x^2+x^3\right )\right )}{x \left (e^x+x\right )}+4 \log ^2(x)\right )\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.66, size = 50, normalized size = 1.39 \begin {gather*} e^{2+\frac {4}{x^2}-\frac {e^{-x}}{x}-\frac {4}{x^2 \left (1+e^{-x} x\right )}+\frac {4}{5} e^{-x} \log ^2(x)} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 56, normalized size = 1.56 \begin {gather*} x e^{\left (\frac {4 \, {\left (x^{2} + x e^{x}\right )} \log \relax (x)^{2} + 10 \, x e^{\left (2 \, x\right )} + 5 \, {\left (2 \, x^{2} + 3\right )} e^{x} - 5 \, x}{5 \, {\left (x^{2} e^{x} + x e^{\left (2 \, x\right )}\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (5 \, x^{3} - 4 \, {\left (x^{4} + 2 \, x^{3} e^{x} + x^{2} e^{\left (2 \, x\right )}\right )} \log \relax (x)^{2} + 5 \, x^{2} + 5 \, x e^{\left (3 \, x\right )} + 5 \, {\left (2 \, x^{2} - 3 \, x - 3\right )} e^{\left (2 \, x\right )} + 5 \, {\left (x^{3} + 2 \, x^{2} - 6 \, x\right )} e^{x} + 8 \, {\left (x^{3} + 2 \, x^{2} e^{x} + x e^{\left (2 \, x\right )}\right )} \log \relax (x)\right )} e^{\left (\frac {4 \, {\left (x^{2} + x e^{x}\right )} \log \relax (x)^{2} + 10 \, x e^{\left (2 \, x\right )} + 5 \, {\left (2 \, x^{2} + 3\right )} e^{x} - 5 \, x}{5 \, {\left (x^{2} e^{x} + x e^{\left (2 \, x\right )}\right )}}\right )}}{5 \, {\left (x^{3} e^{x} + 2 \, x^{2} e^{\left (2 \, x\right )} + x e^{\left (3 \, x\right )}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 60, normalized size = 1.67
method | result | size |
risch | \(x \,{\mathrm e}^{\frac {4 x \,{\mathrm e}^{x} \ln \relax (x )^{2}+4 x^{2} \ln \relax (x )^{2}+10 \,{\mathrm e}^{x} x^{2}+10 x \,{\mathrm e}^{2 x}+15 \,{\mathrm e}^{x}-5 x}{5 x \left ({\mathrm e}^{x} x +{\mathrm e}^{2 x}\right )}}\) | \(60\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{5} \, \int \frac {{\left (5 \, x^{3} - 4 \, {\left (x^{4} + 2 \, x^{3} e^{x} + x^{2} e^{\left (2 \, x\right )}\right )} \log \relax (x)^{2} + 5 \, x^{2} + 5 \, x e^{\left (3 \, x\right )} + 5 \, {\left (2 \, x^{2} - 3 \, x - 3\right )} e^{\left (2 \, x\right )} + 5 \, {\left (x^{3} + 2 \, x^{2} - 6 \, x\right )} e^{x} + 8 \, {\left (x^{3} + 2 \, x^{2} e^{x} + x e^{\left (2 \, x\right )}\right )} \log \relax (x)\right )} e^{\left (\frac {4 \, {\left (x^{2} + x e^{x}\right )} \log \relax (x)^{2} + 10 \, x e^{\left (2 \, x\right )} + 5 \, {\left (2 \, x^{2} + 3\right )} e^{x} - 5 \, x}{5 \, {\left (x^{2} e^{x} + x e^{\left (2 \, x\right )}\right )}}\right )}}{x^{3} e^{x} + 2 \, x^{2} e^{\left (2 \, x\right )} + x e^{\left (3 \, x\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.79, size = 89, normalized size = 2.47 \begin {gather*} x\,{\mathrm {e}}^{\frac {3}{x\,{\mathrm {e}}^x+x^2}}\,{\mathrm {e}}^{\frac {2\,x}{x+{\mathrm {e}}^x}}\,{\mathrm {e}}^{-\frac {1}{{\mathrm {e}}^{2\,x}+x\,{\mathrm {e}}^x}}\,{\mathrm {e}}^{\frac {4\,x\,{\ln \relax (x)}^2}{5\,{\mathrm {e}}^{2\,x}+5\,x\,{\mathrm {e}}^x}}\,{\mathrm {e}}^{\frac {2\,{\mathrm {e}}^x}{x+{\mathrm {e}}^x}}\,{\mathrm {e}}^{\frac {4\,{\ln \relax (x)}^2}{5\,x+5\,{\mathrm {e}}^x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 61.57, size = 58, normalized size = 1.61 \begin {gather*} x e^{\frac {10 x e^{2 x} - 5 x + \left (4 x^{2} + 4 x e^{x}\right ) \log {\relax (x )}^{2} + \left (10 x^{2} + 15\right ) e^{x}}{5 x^{2} e^{x} + 5 x e^{2 x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________