Optimal. Leaf size=18 \[ \frac {1}{4} \left (2 x-e^{21} x (x+\log (x))\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.01, antiderivative size = 38, normalized size of antiderivative = 2.11, number of steps used = 3, number of rules used = 2, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {12, 2295} \begin {gather*} -\frac {1}{16} e^{21} (2 x+1)^2+\frac {e^{21} x}{4}+\frac {x}{2}-\frac {1}{4} e^{21} x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2295
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \left (2+e^{21} (-1-2 x)-e^{21} \log (x)\right ) \, dx\\ &=\frac {x}{2}-\frac {1}{16} e^{21} (1+2 x)^2-\frac {1}{4} e^{21} \int \log (x) \, dx\\ &=\frac {x}{2}+\frac {e^{21} x}{4}-\frac {1}{16} e^{21} (1+2 x)^2-\frac {1}{4} e^{21} x \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 26, normalized size = 1.44 \begin {gather*} \frac {x}{2}-\frac {e^{21} x^2}{4}-\frac {1}{4} e^{21} x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 18, normalized size = 1.00 \begin {gather*} -\frac {1}{4} \, x^{2} e^{21} - \frac {1}{4} \, x e^{21} \log \relax (x) + \frac {1}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 25, normalized size = 1.39 \begin {gather*} -\frac {1}{4} \, {\left (x^{2} + x\right )} e^{21} - \frac {1}{4} \, {\left (x \log \relax (x) - x\right )} e^{21} + \frac {1}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 19, normalized size = 1.06
method | result | size |
norman | \(\frac {x}{2}-\frac {{\mathrm e}^{21} x^{2}}{4}-\frac {\ln \relax (x ) {\mathrm e}^{21} x}{4}\) | \(19\) |
risch | \(\frac {x}{2}-\frac {{\mathrm e}^{21} x^{2}}{4}-\frac {\ln \relax (x ) {\mathrm e}^{21} x}{4}\) | \(19\) |
default | \(\frac {x}{2}+\frac {{\mathrm e}^{21} \left (-x^{2}-x \right )}{4}-\frac {\ln \relax (x ) {\mathrm e}^{21} x}{4}+\frac {x \,{\mathrm e}^{21}}{4}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 25, normalized size = 1.39 \begin {gather*} -\frac {1}{4} \, {\left (x^{2} + x\right )} e^{21} - \frac {1}{4} \, {\left (x \log \relax (x) - x\right )} e^{21} + \frac {1}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.62, size = 14, normalized size = 0.78 \begin {gather*} -\frac {x\,\left (x\,{\mathrm {e}}^{21}+{\mathrm {e}}^{21}\,\ln \relax (x)-2\right )}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 20, normalized size = 1.11 \begin {gather*} - \frac {x^{2} e^{21}}{4} - \frac {x e^{21} \log {\relax (x )}}{4} + \frac {x}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________