Optimal. Leaf size=25 \[ -\left (2+\frac {e^{e^x+x}}{9+e^x}\right )^2+x^3 \]
________________________________________________________________________________________
Rubi [B] time = 1.85, antiderivative size = 66, normalized size of antiderivative = 2.64, number of steps used = 47, number of rules used = 6, integrand size = 119, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.050, Rules used = {6741, 6742, 2282, 2246, 2178, 2177} \begin {gather*} x^3-4 e^{e^x}-e^{2 e^x}+\frac {36 e^{e^x}}{e^x+9}+\frac {18 e^{2 e^x}}{e^x+9}-\frac {81 e^{2 e^x}}{\left (e^x+9\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2177
Rule 2178
Rule 2246
Rule 2282
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{e^x} \left (-324 e^x-360 e^{2 x}-72 e^{3 x}-4 e^{4 x}\right )+e^{2 e^x} \left (-18 e^{2 x}-18 e^{3 x}-2 e^{4 x}\right )+2187 x^2+729 e^x x^2+81 e^{2 x} x^2+3 e^{3 x} x^2}{\left (9+e^x\right )^3} \, dx\\ &=\int \left (-2 e^{e^x+x} \left (2+e^{e^x}\right )-\frac {1458 e^{2 e^x}}{\left (9+e^x\right )^3}+\frac {162 e^{e^x} \left (2+11 e^{e^x}\right )}{\left (9+e^x\right )^2}-\frac {72 e^{e^x} \left (5+7 e^{e^x}\right )}{9+e^x}+3 \left (12 e^{e^x}+12 e^{2 e^x}+x^2\right )\right ) \, dx\\ &=-\left (2 \int e^{e^x+x} \left (2+e^{e^x}\right ) \, dx\right )+3 \int \left (12 e^{e^x}+12 e^{2 e^x}+x^2\right ) \, dx-72 \int \frac {e^{e^x} \left (5+7 e^{e^x}\right )}{9+e^x} \, dx+162 \int \frac {e^{e^x} \left (2+11 e^{e^x}\right )}{\left (9+e^x\right )^2} \, dx-1458 \int \frac {e^{2 e^x}}{\left (9+e^x\right )^3} \, dx\\ &=x^3-2 \operatorname {Subst}\left (\int e^x \left (2+e^x\right ) \, dx,x,e^x\right )+36 \int e^{e^x} \, dx+36 \int e^{2 e^x} \, dx-72 \operatorname {Subst}\left (\int \frac {e^x \left (5+7 e^x\right )}{x (9+x)} \, dx,x,e^x\right )+162 \operatorname {Subst}\left (\int \frac {e^x \left (2+11 e^x\right )}{x (9+x)^2} \, dx,x,e^x\right )-1458 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x (9+x)^3} \, dx,x,e^x\right )\\ &=x^3-2 \operatorname {Subst}\left (\int (2+x) \, dx,x,e^{e^x}\right )+36 \operatorname {Subst}\left (\int \frac {e^x}{x} \, dx,x,e^x\right )+36 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,e^x\right )-72 \operatorname {Subst}\left (\int \left (\frac {5 e^x}{x (9+x)}+\frac {7 e^{2 x}}{x (9+x)}\right ) \, dx,x,e^x\right )+162 \operatorname {Subst}\left (\int \left (\frac {2 e^x}{x (9+x)^2}+\frac {11 e^{2 x}}{x (9+x)^2}\right ) \, dx,x,e^x\right )-1458 \operatorname {Subst}\left (\int \left (\frac {e^{2 x}}{729 x}-\frac {e^{2 x}}{9 (9+x)^3}-\frac {e^{2 x}}{81 (9+x)^2}-\frac {e^{2 x}}{729 (9+x)}\right ) \, dx,x,e^x\right )\\ &=-4 e^{e^x}-e^{2 e^x}+x^3+36 \text {Ei}\left (e^x\right )+36 \text {Ei}\left (2 e^x\right )-2 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,e^x\right )+2 \operatorname {Subst}\left (\int \frac {e^{2 x}}{9+x} \, dx,x,e^x\right )+18 \operatorname {Subst}\left (\int \frac {e^{2 x}}{(9+x)^2} \, dx,x,e^x\right )+162 \operatorname {Subst}\left (\int \frac {e^{2 x}}{(9+x)^3} \, dx,x,e^x\right )+324 \operatorname {Subst}\left (\int \frac {e^x}{x (9+x)^2} \, dx,x,e^x\right )-360 \operatorname {Subst}\left (\int \frac {e^x}{x (9+x)} \, dx,x,e^x\right )-504 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x (9+x)} \, dx,x,e^x\right )+1782 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x (9+x)^2} \, dx,x,e^x\right )\\ &=-4 e^{e^x}-e^{2 e^x}-\frac {81 e^{2 e^x}}{\left (9+e^x\right )^2}-\frac {18 e^{2 e^x}}{9+e^x}+x^3+36 \text {Ei}\left (e^x\right )+34 \text {Ei}\left (2 e^x\right )+\frac {2 \text {Ei}\left (2 \left (9+e^x\right )\right )}{e^{18}}+36 \operatorname {Subst}\left (\int \frac {e^{2 x}}{9+x} \, dx,x,e^x\right )+162 \operatorname {Subst}\left (\int \frac {e^{2 x}}{(9+x)^2} \, dx,x,e^x\right )+324 \operatorname {Subst}\left (\int \left (\frac {e^x}{81 x}-\frac {e^x}{9 (9+x)^2}-\frac {e^x}{81 (9+x)}\right ) \, dx,x,e^x\right )-360 \operatorname {Subst}\left (\int \left (\frac {e^x}{9 x}-\frac {e^x}{9 (9+x)}\right ) \, dx,x,e^x\right )-504 \operatorname {Subst}\left (\int \left (\frac {e^{2 x}}{9 x}-\frac {e^{2 x}}{9 (9+x)}\right ) \, dx,x,e^x\right )+1782 \operatorname {Subst}\left (\int \left (\frac {e^{2 x}}{81 x}-\frac {e^{2 x}}{9 (9+x)^2}-\frac {e^{2 x}}{81 (9+x)}\right ) \, dx,x,e^x\right )\\ &=-4 e^{e^x}-e^{2 e^x}-\frac {81 e^{2 e^x}}{\left (9+e^x\right )^2}-\frac {180 e^{2 e^x}}{9+e^x}+x^3+36 \text {Ei}\left (e^x\right )+34 \text {Ei}\left (2 e^x\right )+\frac {38 \text {Ei}\left (2 \left (9+e^x\right )\right )}{e^{18}}+4 \operatorname {Subst}\left (\int \frac {e^x}{x} \, dx,x,e^x\right )-4 \operatorname {Subst}\left (\int \frac {e^x}{9+x} \, dx,x,e^x\right )+22 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,e^x\right )-22 \operatorname {Subst}\left (\int \frac {e^{2 x}}{9+x} \, dx,x,e^x\right )-36 \operatorname {Subst}\left (\int \frac {e^x}{(9+x)^2} \, dx,x,e^x\right )-40 \operatorname {Subst}\left (\int \frac {e^x}{x} \, dx,x,e^x\right )+40 \operatorname {Subst}\left (\int \frac {e^x}{9+x} \, dx,x,e^x\right )-56 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,e^x\right )+56 \operatorname {Subst}\left (\int \frac {e^{2 x}}{9+x} \, dx,x,e^x\right )-198 \operatorname {Subst}\left (\int \frac {e^{2 x}}{(9+x)^2} \, dx,x,e^x\right )+324 \operatorname {Subst}\left (\int \frac {e^{2 x}}{9+x} \, dx,x,e^x\right )\\ &=-4 e^{e^x}-e^{2 e^x}-\frac {81 e^{2 e^x}}{\left (9+e^x\right )^2}+\frac {36 e^{e^x}}{9+e^x}+\frac {18 e^{2 e^x}}{9+e^x}+x^3+\frac {36 \text {Ei}\left (9+e^x\right )}{e^9}+\frac {396 \text {Ei}\left (2 \left (9+e^x\right )\right )}{e^{18}}-36 \operatorname {Subst}\left (\int \frac {e^x}{9+x} \, dx,x,e^x\right )-396 \operatorname {Subst}\left (\int \frac {e^{2 x}}{9+x} \, dx,x,e^x\right )\\ &=-4 e^{e^x}-e^{2 e^x}-\frac {81 e^{2 e^x}}{\left (9+e^x\right )^2}+\frac {36 e^{e^x}}{9+e^x}+\frac {18 e^{2 e^x}}{9+e^x}+x^3\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 38, normalized size = 1.52 \begin {gather*} -\frac {e^{2 \left (e^x+x\right )}}{\left (9+e^x\right )^2}-\frac {4 e^{e^x+x}}{9+e^x}+x^3 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.79, size = 59, normalized size = 2.36 \begin {gather*} \frac {x^{3} e^{\left (2 \, x\right )} + 18 \, x^{3} e^{x} + 81 \, x^{3} - 4 \, {\left (e^{\left (2 \, x\right )} + 9 \, e^{x}\right )} e^{\left (e^{x}\right )} - e^{\left (2 \, x + 2 \, e^{x}\right )}}{e^{\left (2 \, x\right )} + 18 \, e^{x} + 81} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 61, normalized size = 2.44 \begin {gather*} \frac {x^{3} e^{\left (2 \, x\right )} + 18 \, x^{3} e^{x} + 81 \, x^{3} - e^{\left (2 \, x + 2 \, e^{x}\right )} - 4 \, e^{\left (2 \, x + e^{x}\right )} - 36 \, e^{\left (x + e^{x}\right )}}{e^{\left (2 \, x\right )} + 18 \, e^{x} + 81} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 35, normalized size = 1.40
method | result | size |
risch | \(x^{3}-\frac {{\mathrm e}^{2 \,{\mathrm e}^{x}+2 x}}{\left (9+{\mathrm e}^{x}\right )^{2}}-\frac {4 \,{\mathrm e}^{{\mathrm e}^{x}+x}}{9+{\mathrm e}^{x}}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 59, normalized size = 2.36 \begin {gather*} \frac {x^{3} e^{\left (2 \, x\right )} + 18 \, x^{3} e^{x} + 81 \, x^{3} - 4 \, {\left (e^{\left (2 \, x\right )} + 9 \, e^{x}\right )} e^{\left (e^{x}\right )} - e^{\left (2 \, x + 2 \, e^{x}\right )}}{e^{\left (2 \, x\right )} + 18 \, e^{x} + 81} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.55, size = 40, normalized size = 1.60 \begin {gather*} x^3-\frac {4\,{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^x}{{\mathrm {e}}^x+9}-\frac {{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{2\,{\mathrm {e}}^x}}{{\mathrm {e}}^{2\,x}+18\,{\mathrm {e}}^x+81} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.22, size = 66, normalized size = 2.64 \begin {gather*} x^{3} + \frac {\left (- e^{3 x} - 9 e^{2 x}\right ) e^{2 e^{x}} + \left (- 4 e^{3 x} - 72 e^{2 x} - 324 e^{x}\right ) e^{e^{x}}}{e^{3 x} + 27 e^{2 x} + 243 e^{x} + 729} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________