Optimal. Leaf size=16 \[ x \left (4+e^4+\frac {1}{-e^2+x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 22, normalized size of antiderivative = 1.38, number of steps used = 3, number of rules used = 2, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {27, 1850} \begin {gather*} \left (4+e^4\right ) x-\frac {e^2}{e^2-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1850
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 e^4+e^2 (-1-8 x)+4 x^2+e^4 \left (e^4-2 e^2 x+x^2\right )}{\left (-e^2+x\right )^2} \, dx\\ &=\int \left (4+e^4-\frac {e^2}{\left (-e^2+x\right )^2}\right ) \, dx\\ &=-\frac {e^2}{e^2-x}+\left (4+e^4\right ) x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 29, normalized size = 1.81 \begin {gather*} -\frac {e^2}{e^2-x}-\left (4+e^4\right ) \left (e^2-x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.54, size = 35, normalized size = 2.19 \begin {gather*} \frac {x^{2} e^{4} + 4 \, x^{2} - x e^{6} - {\left (4 \, x - 1\right )} e^{2}}{x - e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.52, size = 21, normalized size = 1.31
method | result | size |
risch | \(x \,{\mathrm e}^{4}+4 x -\frac {{\mathrm e}^{2}}{{\mathrm e}^{2}-x}\) | \(21\) |
norman | \(\frac {\left (-4-{\mathrm e}^{4}\right ) x^{2}+\left ({\mathrm e}^{4}\right )^{2}+4 \,{\mathrm e}^{4}-{\mathrm e}^{2}}{{\mathrm e}^{2}-x}\) | \(38\) |
gosper | \(\frac {\left ({\mathrm e}^{4}\right )^{2}-x^{2} {\mathrm e}^{4}+4 \,{\mathrm e}^{4}-4 x^{2}-{\mathrm e}^{2}}{{\mathrm e}^{2}-x}\) | \(40\) |
meijerg | \(\frac {4 x}{1-x \,{\mathrm e}^{-2}}+\left (-2 \,{\mathrm e}^{6}-8 \,{\mathrm e}^{2}\right ) \left (\frac {x \,{\mathrm e}^{-2}}{1-x \,{\mathrm e}^{-2}}+\ln \left (1-x \,{\mathrm e}^{-2}\right )\right )-\left (4+{\mathrm e}^{4}\right ) {\mathrm e}^{2} \left (-\frac {x \,{\mathrm e}^{-2} \left (-3 x \,{\mathrm e}^{-2}+6\right )}{3 \left (1-x \,{\mathrm e}^{-2}\right )}-2 \ln \left (1-x \,{\mathrm e}^{-2}\right )\right )+\frac {{\mathrm e}^{4} x}{1-x \,{\mathrm e}^{-2}}-\frac {x \,{\mathrm e}^{-2}}{1-x \,{\mathrm e}^{-2}}\) | \(113\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 18, normalized size = 1.12 \begin {gather*} x {\left (e^{4} + 4\right )} + \frac {e^{2}}{x - e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.13, size = 18, normalized size = 1.12 \begin {gather*} x\,\left ({\mathrm {e}}^4+4\right )+\frac {{\mathrm {e}}^2}{x-{\mathrm {e}}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 14, normalized size = 0.88 \begin {gather*} x \left (4 + e^{4}\right ) + \frac {e^{2}}{x - e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________