Optimal. Leaf size=23 \[ x \left (5+x-\frac {e^5 x^2}{\left (x+\log \left (\frac {4}{x}\right )\right )^2}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.45, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5 x^3+2 x^4+e^5 \left (-2 x^2-x^3\right )+\left (15 x^2-3 e^5 x^2+6 x^3\right ) \log \left (\frac {4}{x}\right )+\left (15 x+6 x^2\right ) \log ^2\left (\frac {4}{x}\right )+(5+2 x) \log ^3\left (\frac {4}{x}\right )}{x^3+3 x^2 \log \left (\frac {4}{x}\right )+3 x \log ^2\left (\frac {4}{x}\right )+\log ^3\left (\frac {4}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^2 \left (-e^5 (2+x)+x (5+2 x)\right )+3 x^2 \left (5-e^5+2 x\right ) \log \left (\frac {4}{x}\right )+3 x (5+2 x) \log ^2\left (\frac {4}{x}\right )+(5+2 x) \log ^3\left (\frac {4}{x}\right )}{\left (x+\log \left (\frac {4}{x}\right )\right )^3} \, dx\\ &=\int \left (5+2 x+\frac {2 e^5 (-1+x) x^2}{\left (x+\log \left (\frac {4}{x}\right )\right )^3}-\frac {3 e^5 x^2}{\left (x+\log \left (\frac {4}{x}\right )\right )^2}\right ) \, dx\\ &=5 x+x^2+\left (2 e^5\right ) \int \frac {(-1+x) x^2}{\left (x+\log \left (\frac {4}{x}\right )\right )^3} \, dx-\left (3 e^5\right ) \int \frac {x^2}{\left (x+\log \left (\frac {4}{x}\right )\right )^2} \, dx\\ &=5 x+x^2+\left (2 e^5\right ) \int \left (-\frac {x^2}{\left (x+\log \left (\frac {4}{x}\right )\right )^3}+\frac {x^3}{\left (x+\log \left (\frac {4}{x}\right )\right )^3}\right ) \, dx-\left (3 e^5\right ) \int \frac {x^2}{\left (x+\log \left (\frac {4}{x}\right )\right )^2} \, dx\\ &=5 x+x^2-\left (2 e^5\right ) \int \frac {x^2}{\left (x+\log \left (\frac {4}{x}\right )\right )^3} \, dx+\left (2 e^5\right ) \int \frac {x^3}{\left (x+\log \left (\frac {4}{x}\right )\right )^3} \, dx-\left (3 e^5\right ) \int \frac {x^2}{\left (x+\log \left (\frac {4}{x}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 25, normalized size = 1.09 \begin {gather*} 5 x+x^2-\frac {e^5 x^3}{\left (x+\log \left (\frac {4}{x}\right )\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.53, size = 73, normalized size = 3.17 \begin {gather*} \frac {x^{4} - x^{3} e^{5} + 5 \, x^{3} + {\left (x^{2} + 5 \, x\right )} \log \left (\frac {4}{x}\right )^{2} + 2 \, {\left (x^{3} + 5 \, x^{2}\right )} \log \left (\frac {4}{x}\right )}{x^{2} + 2 \, x \log \left (\frac {4}{x}\right ) + \log \left (\frac {4}{x}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 92, normalized size = 4.00 \begin {gather*} -\frac {\frac {e^{5}}{x} - \frac {2 \, \log \left (\frac {4}{x}\right )}{x} - \frac {\log \left (\frac {4}{x}\right )^{2}}{x^{2}} - \frac {5}{x} - \frac {10 \, \log \left (\frac {4}{x}\right )}{x^{2}} - \frac {5 \, \log \left (\frac {4}{x}\right )^{2}}{x^{3}} - 1}{\frac {1}{x^{2}} + \frac {2 \, \log \left (\frac {4}{x}\right )}{x^{3}} + \frac {\log \left (\frac {4}{x}\right )^{2}}{x^{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 25, normalized size = 1.09
method | result | size |
risch | \(x^{2}+5 x -\frac {{\mathrm e}^{5} x^{3}}{\left (\ln \left (\frac {4}{x}\right )+x \right )^{2}}\) | \(25\) |
norman | \(\frac {x^{4}+x^{2} \ln \left (\frac {4}{x}\right )^{2}+\left (5-{\mathrm e}^{5}\right ) x^{3}+5 x \ln \left (\frac {4}{x}\right )^{2}+10 x^{2} \ln \left (\frac {4}{x}\right )+2 x^{3} \ln \left (\frac {4}{x}\right )}{\left (\ln \left (\frac {4}{x}\right )+x \right )^{2}}\) | \(71\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 105, normalized size = 4.57 \begin {gather*} \frac {x^{4} - x^{3} {\left (e^{5} - 4 \, \log \relax (2) - 5\right )} + 4 \, {\left (\log \relax (2)^{2} + 5 \, \log \relax (2)\right )} x^{2} + 20 \, x \log \relax (2)^{2} + {\left (x^{2} + 5 \, x\right )} \log \relax (x)^{2} - 2 \, {\left (x^{3} + x^{2} {\left (2 \, \log \relax (2) + 5\right )} + 10 \, x \log \relax (2)\right )} \log \relax (x)}{x^{2} + 4 \, x \log \relax (2) + 4 \, \log \relax (2)^{2} - 2 \, {\left (x + 2 \, \log \relax (2)\right )} \log \relax (x) + \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.86, size = 73, normalized size = 3.17 \begin {gather*} x\,\left (x+5\right )-\frac {x^3\,\left (x+5\right )+\ln \left (\frac {4}{x}\right )\,\left (2\,x^2\,\left (x+5\right )-x\,\left (2\,x^2+10\,x\right )\right )-x\,\left (5\,x^2-x^2\,{\mathrm {e}}^5+x^3\right )}{{\left (x+\ln \left (\frac {4}{x}\right )\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 31, normalized size = 1.35 \begin {gather*} - \frac {x^{3} e^{5}}{x^{2} + 2 x \log {\left (\frac {4}{x} \right )} + \log {\left (\frac {4}{x} \right )}^{2}} + x^{2} + 5 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________