Optimal. Leaf size=19 \[ e^{4-e^x+e^{2+x}-\frac {71 x}{11}} \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 23, normalized size of antiderivative = 1.21, number of steps used = 2, number of rules used = 2, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.049, Rules used = {12, 6706} \begin {gather*} e^{\frac {1}{11} \left (-71 x-11 e^x+11 e^{x+2}+44\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{11} \int e^{\frac {1}{11} \left (44-11 e^x+11 e^{2+x}-71 x\right )} \left (-71-11 e^x+11 e^{2+x}\right ) \, dx\\ &=e^{\frac {1}{11} \left (44-11 e^x+11 e^{2+x}-71 x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 18, normalized size = 0.95 \begin {gather*} e^{4+e^x \left (-1+e^2\right )-\frac {71 x}{11}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 24, normalized size = 1.26 \begin {gather*} e^{\left (-\frac {1}{11} \, {\left ({\left (71 \, x - 44\right )} e^{2} - 11 \, {\left (e^{2} - 1\right )} e^{\left (x + 2\right )}\right )} e^{\left (-2\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 14, normalized size = 0.74 \begin {gather*} e^{\left (-\frac {71}{11} \, x + e^{\left (x + 2\right )} - e^{x} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 15, normalized size = 0.79
method | result | size |
risch | \({\mathrm e}^{{\mathrm e}^{2+x}-{\mathrm e}^{x}-\frac {71 x}{11}+4}\) | \(15\) |
norman | \({\mathrm e}^{{\mathrm e}^{2} {\mathrm e}^{x}-{\mathrm e}^{x}-\frac {71 x}{11}+4}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 14, normalized size = 0.74 \begin {gather*} e^{\left (-\frac {71}{11} \, x + e^{\left (x + 2\right )} - e^{x} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 18, normalized size = 0.95 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^2\,{\mathrm {e}}^x}\,{\mathrm {e}}^{-\frac {71\,x}{11}}\,{\mathrm {e}}^4\,{\mathrm {e}}^{-{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 17, normalized size = 0.89 \begin {gather*} e^{- \frac {71 x}{11} - e^{x} + e^{2} e^{x} + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________