Optimal. Leaf size=23 \[ x+\frac {-1+e^{-4+3 x-x^4}}{\log (5+x)} \]
________________________________________________________________________________________
Rubi [B] time = 0.96, antiderivative size = 75, normalized size of antiderivative = 3.26, number of steps used = 8, number of rules used = 6, integrand size = 70, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {6742, 2288, 6688, 2390, 2302, 30} \begin {gather*} \frac {e^{-x^4+3 x-4} \left (-4 x^4 \log (x+5)-20 x^3 \log (x+5)+3 x \log (x+5)+15 \log (x+5)\right )}{(x+5) \left (3-4 x^3\right ) \log ^2(x+5)}+x-\frac {1}{\log (x+5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 30
Rule 2288
Rule 2302
Rule 2390
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {e^{-4+3 x-x^4} \left (1-15 \log (5+x)-3 x \log (5+x)+20 x^3 \log (5+x)+4 x^4 \log (5+x)\right )}{(5+x) \log ^2(5+x)}+\frac {1+5 \log ^2(5+x)+x \log ^2(5+x)}{(5+x) \log ^2(5+x)}\right ) \, dx\\ &=-\int \frac {e^{-4+3 x-x^4} \left (1-15 \log (5+x)-3 x \log (5+x)+20 x^3 \log (5+x)+4 x^4 \log (5+x)\right )}{(5+x) \log ^2(5+x)} \, dx+\int \frac {1+5 \log ^2(5+x)+x \log ^2(5+x)}{(5+x) \log ^2(5+x)} \, dx\\ &=\frac {e^{-4+3 x-x^4} \left (15 \log (5+x)+3 x \log (5+x)-20 x^3 \log (5+x)-4 x^4 \log (5+x)\right )}{(5+x) \left (3-4 x^3\right ) \log ^2(5+x)}+\int \left (1+\frac {1}{(5+x) \log ^2(5+x)}\right ) \, dx\\ &=x+\frac {e^{-4+3 x-x^4} \left (15 \log (5+x)+3 x \log (5+x)-20 x^3 \log (5+x)-4 x^4 \log (5+x)\right )}{(5+x) \left (3-4 x^3\right ) \log ^2(5+x)}+\int \frac {1}{(5+x) \log ^2(5+x)} \, dx\\ &=x+\frac {e^{-4+3 x-x^4} \left (15 \log (5+x)+3 x \log (5+x)-20 x^3 \log (5+x)-4 x^4 \log (5+x)\right )}{(5+x) \left (3-4 x^3\right ) \log ^2(5+x)}+\operatorname {Subst}\left (\int \frac {1}{x \log ^2(x)} \, dx,x,5+x\right )\\ &=x+\frac {e^{-4+3 x-x^4} \left (15 \log (5+x)+3 x \log (5+x)-20 x^3 \log (5+x)-4 x^4 \log (5+x)\right )}{(5+x) \left (3-4 x^3\right ) \log ^2(5+x)}+\operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (5+x)\right )\\ &=x-\frac {1}{\log (5+x)}+\frac {e^{-4+3 x-x^4} \left (15 \log (5+x)+3 x \log (5+x)-20 x^3 \log (5+x)-4 x^4 \log (5+x)\right )}{(5+x) \left (3-4 x^3\right ) \log ^2(5+x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 27, normalized size = 1.17 \begin {gather*} \frac {-1+e^{-4+3 x-x^4}+x \log (5+x)}{\log (5+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 26, normalized size = 1.13 \begin {gather*} \frac {x \log \left (x + 5\right ) + e^{\left (-x^{4} + 3 \, x - 4\right )} - 1}{\log \left (x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 32, normalized size = 1.39 \begin {gather*} \frac {{\left (x e^{4} \log \left (x + 5\right ) - e^{4} + e^{\left (-x^{4} + 3 \, x\right )}\right )} e^{\left (-4\right )}}{\log \left (x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.42, size = 23, normalized size = 1.00
method | result | size |
risch | \(\frac {{\mathrm e}^{-x^{4}+3 x -4}-1}{\ln \left (5+x \right )}+x\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 37, normalized size = 1.61 \begin {gather*} \frac {{\left (x e^{4} \log \left (x + 5\right ) + e^{\left (-x^{4} + 3 \, x\right )}\right )} e^{\left (-4\right )}}{\log \left (x + 5\right )} - \frac {1}{\log \left (x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.56, size = 29, normalized size = 1.26 \begin {gather*} x-\frac {1}{\ln \left (x+5\right )}+\frac {{\mathrm {e}}^{3\,x}\,{\mathrm {e}}^{-4}\,{\mathrm {e}}^{-x^4}}{\ln \left (x+5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 22, normalized size = 0.96 \begin {gather*} x + \frac {e^{- x^{4} + 3 x - 4}}{\log {\left (x + 5 \right )}} - \frac {1}{\log {\left (x + 5 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________