Optimal. Leaf size=12 \[ \log (x)+x (-2+\log (1+\log (x))) \]
________________________________________________________________________________________
Rubi [F] time = 0.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1-x+(1-2 x) \log (x)+(x+x \log (x)) \log (1+\log (x))}{x+x \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1-x+(1-2 x) \log (x)+(x+x \log (x)) \log (1+\log (x))}{x (1+\log (x))} \, dx\\ &=\int \left (\frac {1-x+\log (x)-2 x \log (x)}{x (1+\log (x))}+\log (1+\log (x))\right ) \, dx\\ &=\int \frac {1-x+\log (x)-2 x \log (x)}{x (1+\log (x))} \, dx+\int \log (1+\log (x)) \, dx\\ &=\int \left (\frac {1-2 x}{x}+\frac {1}{1+\log (x)}\right ) \, dx+\int \log (1+\log (x)) \, dx\\ &=\int \frac {1-2 x}{x} \, dx+\int \frac {1}{1+\log (x)} \, dx+\int \log (1+\log (x)) \, dx\\ &=\int \left (-2+\frac {1}{x}\right ) \, dx+\int \log (1+\log (x)) \, dx+\operatorname {Subst}\left (\int \frac {e^x}{1+x} \, dx,x,\log (x)\right )\\ &=-2 x+\frac {\text {Ei}(1+\log (x))}{e}+\log (x)+\int \log (1+\log (x)) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 13, normalized size = 1.08 \begin {gather*} -2 x+\log (x)+x \log (1+\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 13, normalized size = 1.08 \begin {gather*} x \log \left (\log \relax (x) + 1\right ) - 2 \, x + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 13, normalized size = 1.08 \begin {gather*} x \log \left (\log \relax (x) + 1\right ) - 2 \, x + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 14, normalized size = 1.17
method | result | size |
norman | \(\ln \relax (x )+\ln \left (\ln \relax (x )+1\right ) x -2 x\) | \(14\) |
risch | \(\ln \relax (x )+\ln \left (\ln \relax (x )+1\right ) x -2 x\) | \(14\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 20, normalized size = 1.67 \begin {gather*} {\left (x - 1\right )} \log \left (\log \relax (x) + 1\right ) - 2 \, x + \log \relax (x) + \log \left (\log \relax (x) + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.59, size = 13, normalized size = 1.08 \begin {gather*} \ln \relax (x)-2\,x+x\,\ln \left (\ln \relax (x)+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 14, normalized size = 1.17 \begin {gather*} x \log {\left (\log {\relax (x )} + 1 \right )} - 2 x + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________