Optimal. Leaf size=23 \[ 6-\log \left (x \left (x+9 \left (1+e^{\frac {4}{(3+x)^2}}+x\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.50, antiderivative size = 21, normalized size of antiderivative = 0.91, number of steps used = 2, number of rules used = 2, integrand size = 111, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.018, Rules used = {6688, 6685} \begin {gather*} -\log \left (x \left (10 x+9 e^{\frac {4}{(x+3)^2}}+9\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6685
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-(3+x)^3 (9+20 x)-9 e^{\frac {4}{(3+x)^2}} \left (27+19 x+9 x^2+x^3\right )}{x (3+x)^3 \left (9+9 e^{\frac {4}{(3+x)^2}}+10 x\right )} \, dx\\ &=-\log \left (x \left (9+9 e^{\frac {4}{(3+x)^2}}+10 x\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 24, normalized size = 1.04 \begin {gather*} -\log (x)-\log \left (9+9 e^{\frac {4}{(3+x)^2}}+10 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 28, normalized size = 1.22 \begin {gather*} -\log \left (10 \, x + 9 \, e^{\left (\frac {4}{x^{2} + 6 \, x + 9}\right )} + 9\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 37, normalized size = 1.61 \begin {gather*} -\log \left (10 \, x + 9 \, e^{\left (-\frac {4 \, {\left (x^{2} + 6 \, x\right )}}{9 \, {\left (x^{2} + 6 \, x + 9\right )}} + \frac {4}{9}\right )} + 9\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 22, normalized size = 0.96
method | result | size |
risch | \(-\ln \relax (x )-\ln \left ({\mathrm e}^{\frac {4}{\left (3+x \right )^{2}}}+\frac {10 x}{9}+1\right )\) | \(22\) |
norman | \(-\ln \relax (x )-\ln \left (9 \,{\mathrm e}^{\frac {4}{x^{2}+6 x +9}}+10 x +9\right )\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 26, normalized size = 1.13 \begin {gather*} -\log \left (\frac {10}{9} \, x + e^{\left (\frac {4}{x^{2} + 6 \, x + 9}\right )} + 1\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.72, size = 21, normalized size = 0.91 \begin {gather*} -\ln \left (x+\frac {9\,{\mathrm {e}}^{\frac {4}{{\left (x+3\right )}^2}}}{10}+\frac {9}{10}\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.41, size = 24, normalized size = 1.04 \begin {gather*} - \log {\relax (x )} - \log {\left (\frac {10 x}{9} + e^{\frac {4}{x^{2} + 6 x + 9}} + 1 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________