Optimal. Leaf size=29 \[ \frac {\log (4) \left (e^x-\frac {1+\log \left ((x+\log (4))^2\right )}{x}\right )}{\log \left (\frac {x}{4}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 3.72, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x \log (4)+\log ^2(4)+e^x \left (-x^2 \log (4)-x \log ^2(4)\right )+\left (-x \log (4)+\log ^2(4)+e^x \left (x^3 \log (4)+x^2 \log ^2(4)\right )\right ) \log \left (\frac {x}{4}\right )+\left (x \log (4)+\log ^2(4)+\left (x \log (4)+\log ^2(4)\right ) \log \left (\frac {x}{4}\right )\right ) \log \left (x^2+2 x \log (4)+\log ^2(4)\right )}{\left (x^3+x^2 \log (4)\right ) \log ^2\left (\frac {x}{4}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \log (4)+\log ^2(4)+e^x \left (-x^2 \log (4)-x \log ^2(4)\right )+\left (-x \log (4)+\log ^2(4)+e^x \left (x^3 \log (4)+x^2 \log ^2(4)\right )\right ) \log \left (\frac {x}{4}\right )+\left (x \log (4)+\log ^2(4)+\left (x \log (4)+\log ^2(4)\right ) \log \left (\frac {x}{4}\right )\right ) \log \left (x^2+2 x \log (4)+\log ^2(4)\right )}{x^2 (x+\log (4)) \log ^2\left (\frac {x}{4}\right )} \, dx\\ &=\int \frac {\log (4) \left (-\left ((x+\log (4)) \left (-1+e^x x-\log \left ((x+\log (4))^2\right )\right )\right )+\log \left (\frac {x}{4}\right ) \left (-x+e^x x^3+\log (4)+e^x x^2 \log (4)+(x+\log (4)) \log \left ((x+\log (4))^2\right )\right )\right )}{x^2 (x+\log (4)) \log ^2\left (\frac {x}{4}\right )} \, dx\\ &=\log (4) \int \frac {-\left ((x+\log (4)) \left (-1+e^x x-\log \left ((x+\log (4))^2\right )\right )\right )+\log \left (\frac {x}{4}\right ) \left (-x+e^x x^3+\log (4)+e^x x^2 \log (4)+(x+\log (4)) \log \left ((x+\log (4))^2\right )\right )}{x^2 (x+\log (4)) \log ^2\left (\frac {x}{4}\right )} \, dx\\ &=\log (4) \int \left (\frac {e^x \left (-1+x \log \left (\frac {x}{4}\right )\right )}{x \log ^2\left (\frac {x}{4}\right )}+\frac {x+\log (4)-x \log \left (\frac {x}{4}\right )+\log (4) \log \left (\frac {x}{4}\right )+x \log \left ((x+\log (4))^2\right )+\log (4) \log \left ((x+\log (4))^2\right )+x \log \left (\frac {x}{4}\right ) \log \left ((x+\log (4))^2\right )+\log (4) \log \left (\frac {x}{4}\right ) \log \left ((x+\log (4))^2\right )}{x^2 (x+\log (4)) \log ^2\left (\frac {x}{4}\right )}\right ) \, dx\\ &=\log (4) \int \frac {e^x \left (-1+x \log \left (\frac {x}{4}\right )\right )}{x \log ^2\left (\frac {x}{4}\right )} \, dx+\log (4) \int \frac {x+\log (4)-x \log \left (\frac {x}{4}\right )+\log (4) \log \left (\frac {x}{4}\right )+x \log \left ((x+\log (4))^2\right )+\log (4) \log \left ((x+\log (4))^2\right )+x \log \left (\frac {x}{4}\right ) \log \left ((x+\log (4))^2\right )+\log (4) \log \left (\frac {x}{4}\right ) \log \left ((x+\log (4))^2\right )}{x^2 (x+\log (4)) \log ^2\left (\frac {x}{4}\right )} \, dx\\ &=\frac {e^x \log (4)}{\log \left (\frac {x}{4}\right )}+\log (4) \int \frac {(x+\log (4)) \left (1+\log \left ((x+\log (4))^2\right )\right )+\log \left (\frac {x}{4}\right ) \left (-x+\log (4)+(x+\log (4)) \log \left ((x+\log (4))^2\right )\right )}{x^2 (x+\log (4)) \log ^2\left (\frac {x}{4}\right )} \, dx\\ &=\frac {e^x \log (4)}{\log \left (\frac {x}{4}\right )}+\log (4) \int \left (\frac {x+\log (4)-x \log \left (\frac {x}{4}\right )+\log (4) \log \left (\frac {x}{4}\right )}{x^2 (x+\log (4)) \log ^2\left (\frac {x}{4}\right )}+\frac {\left (1+\log \left (\frac {x}{4}\right )\right ) \log \left ((x+\log (4))^2\right )}{x^2 \log ^2\left (\frac {x}{4}\right )}\right ) \, dx\\ &=\frac {e^x \log (4)}{\log \left (\frac {x}{4}\right )}+\log (4) \int \frac {x+\log (4)-x \log \left (\frac {x}{4}\right )+\log (4) \log \left (\frac {x}{4}\right )}{x^2 (x+\log (4)) \log ^2\left (\frac {x}{4}\right )} \, dx+\log (4) \int \frac {\left (1+\log \left (\frac {x}{4}\right )\right ) \log \left ((x+\log (4))^2\right )}{x^2 \log ^2\left (\frac {x}{4}\right )} \, dx\\ &=\frac {e^x \log (4)}{\log \left (\frac {x}{4}\right )}+\log (4) \int \left (\frac {1}{x^2 \log ^2\left (\frac {x}{4}\right )}+\frac {-x+\log (4)}{x^2 (x+\log (4)) \log \left (\frac {x}{4}\right )}\right ) \, dx+\log (4) \int \left (\frac {\log \left ((x+\log (4))^2\right )}{x^2 \log ^2\left (\frac {x}{4}\right )}+\frac {\log \left ((x+\log (4))^2\right )}{x^2 \log \left (\frac {x}{4}\right )}\right ) \, dx\\ &=\frac {e^x \log (4)}{\log \left (\frac {x}{4}\right )}+\log (4) \int \frac {1}{x^2 \log ^2\left (\frac {x}{4}\right )} \, dx+\log (4) \int \frac {-x+\log (4)}{x^2 (x+\log (4)) \log \left (\frac {x}{4}\right )} \, dx+\log (4) \int \frac {\log \left ((x+\log (4))^2\right )}{x^2 \log ^2\left (\frac {x}{4}\right )} \, dx+\log (4) \int \frac {\log \left ((x+\log (4))^2\right )}{x^2 \log \left (\frac {x}{4}\right )} \, dx\\ &=\frac {e^x \log (4)}{\log \left (\frac {x}{4}\right )}-\frac {\log (4)}{x \log \left (\frac {x}{4}\right )}-\log (4) \int \frac {1}{x^2 \log \left (\frac {x}{4}\right )} \, dx+\log (4) \int \frac {-x+\log (4)}{x^2 (x+\log (4)) \log \left (\frac {x}{4}\right )} \, dx+\log (4) \int \frac {\log \left ((x+\log (4))^2\right )}{x^2 \log ^2\left (\frac {x}{4}\right )} \, dx+\log (4) \int \frac {\log \left ((x+\log (4))^2\right )}{x^2 \log \left (\frac {x}{4}\right )} \, dx\\ &=\frac {e^x \log (4)}{\log \left (\frac {x}{4}\right )}-\frac {\log (4)}{x \log \left (\frac {x}{4}\right )}-\frac {1}{4} \log (4) \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log \left (\frac {x}{4}\right )\right )+\log (4) \int \frac {-x+\log (4)}{x^2 (x+\log (4)) \log \left (\frac {x}{4}\right )} \, dx+\log (4) \int \frac {\log \left ((x+\log (4))^2\right )}{x^2 \log ^2\left (\frac {x}{4}\right )} \, dx+\log (4) \int \frac {\log \left ((x+\log (4))^2\right )}{x^2 \log \left (\frac {x}{4}\right )} \, dx\\ &=-\frac {1}{4} \text {Ei}\left (-\log \left (\frac {x}{4}\right )\right ) \log (4)+\frac {e^x \log (4)}{\log \left (\frac {x}{4}\right )}-\frac {\log (4)}{x \log \left (\frac {x}{4}\right )}+\log (4) \int \frac {-x+\log (4)}{x^2 (x+\log (4)) \log \left (\frac {x}{4}\right )} \, dx+\log (4) \int \frac {\log \left ((x+\log (4))^2\right )}{x^2 \log ^2\left (\frac {x}{4}\right )} \, dx+\log (4) \int \frac {\log \left ((x+\log (4))^2\right )}{x^2 \log \left (\frac {x}{4}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 30, normalized size = 1.03 \begin {gather*} \frac {\log (4) \left (-1+e^x x-\log \left ((x+\log (4))^2\right )\right )}{x \log \left (\frac {x}{4}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 42, normalized size = 1.45 \begin {gather*} \frac {2 \, {\left (x e^{x} \log \relax (2) - \log \relax (2) \log \left (x^{2} + 4 \, x \log \relax (2) + 4 \, \log \relax (2)^{2}\right ) - \log \relax (2)\right )}}{x \log \left (\frac {1}{4} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 46, normalized size = 1.59 \begin {gather*} -\frac {2 \, {\left (x e^{x} \log \relax (2) - \log \relax (2) \log \left (x^{2} + 4 \, x \log \relax (2) + 4 \, \log \relax (2)^{2}\right ) - \log \relax (2)\right )}}{2 \, x \log \relax (2) - x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.48, size = 115, normalized size = 3.97
method | result | size |
risch | \(-\frac {4 \ln \relax (2) \ln \left (\ln \relax (2)+\frac {x}{2}\right )}{x \ln \left (\frac {x}{4}\right )}+\frac {\ln \relax (2) \left (i \pi \mathrm {csgn}\left (i \left (\ln \relax (2)+\frac {x}{2}\right )\right )^{2} \mathrm {csgn}\left (i \left (\ln \relax (2)+\frac {x}{2}\right )^{2}\right )-2 i \pi \,\mathrm {csgn}\left (i \left (\ln \relax (2)+\frac {x}{2}\right )\right ) \mathrm {csgn}\left (i \left (\ln \relax (2)+\frac {x}{2}\right )^{2}\right )^{2}+i \pi \mathrm {csgn}\left (i \left (\ln \relax (2)+\frac {x}{2}\right )^{2}\right )^{3}+2 \,{\mathrm e}^{x} x -2\right )}{x \ln \left (\frac {x}{4}\right )}\) | \(115\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 37, normalized size = 1.28 \begin {gather*} -\frac {2 \, {\left (x e^{x} \log \relax (2) - 2 \, \log \relax (2) \log \left (x + 2 \, \log \relax (2)\right ) - \log \relax (2)\right )}}{2 \, x \log \relax (2) - x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {2\,x\,\ln \relax (2)+\ln \left (x^2+4\,\ln \relax (2)\,x+4\,{\ln \relax (2)}^2\right )\,\left (2\,x\,\ln \relax (2)+\ln \left (\frac {x}{4}\right )\,\left (2\,x\,\ln \relax (2)+4\,{\ln \relax (2)}^2\right )+4\,{\ln \relax (2)}^2\right )+\ln \left (\frac {x}{4}\right )\,\left ({\mathrm {e}}^x\,\left (2\,\ln \relax (2)\,x^3+4\,{\ln \relax (2)}^2\,x^2\right )-2\,x\,\ln \relax (2)+4\,{\ln \relax (2)}^2\right )+4\,{\ln \relax (2)}^2-{\mathrm {e}}^x\,\left (2\,\ln \relax (2)\,x^2+4\,{\ln \relax (2)}^2\,x\right )}{{\ln \left (\frac {x}{4}\right )}^2\,\left (x^3+2\,\ln \relax (2)\,x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.63, size = 54, normalized size = 1.86 \begin {gather*} \frac {2 e^{x} \log {\relax (2 )}}{\log {\left (\frac {x}{4} \right )}} - \frac {2 \log {\relax (2 )} \log {\left (x^{2} + 4 x \log {\relax (2 )} + 4 \log {\relax (2 )}^{2} \right )}}{x \log {\left (\frac {x}{4} \right )}} - \frac {2 \log {\relax (2 )}}{x \log {\left (\frac {x}{4} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________