Optimal. Leaf size=32 \[ \frac {-5+\frac {\left (3-e^{\frac {1+x}{2}}+2 x\right )^2}{\log ^2(2)}}{2 x} \]
________________________________________________________________________________________
Rubi [B] time = 0.19, antiderivative size = 76, normalized size of antiderivative = 2.38, number of steps used = 12, number of rules used = 7, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.132, Rules used = {12, 14, 2197, 2199, 2194, 2177, 2178} \begin {gather*} \frac {2 x}{\log ^2(2)}-\frac {2 e^{\frac {x}{2}+\frac {1}{2}}}{\log ^2(2)}-\frac {3 e^{\frac {x}{2}+\frac {1}{2}}}{x \log ^2(2)}+\frac {e^{x+1}}{2 x \log ^2(2)}-\frac {5-\frac {9}{\log ^2(2)}}{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2177
Rule 2178
Rule 2194
Rule 2197
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-9+e^{1+x} (-1+x)+4 x^2+e^{\frac {1+x}{2}} \left (6-3 x-2 x^2\right )+5 \log ^2(2)}{x^2} \, dx}{2 \log ^2(2)}\\ &=\frac {\int \left (\frac {e^{1+x} (-1+x)}{x^2}-\frac {e^{\frac {1}{2}+\frac {x}{2}} \left (-6+3 x+2 x^2\right )}{x^2}+\frac {-9+4 x^2+5 \log ^2(2)}{x^2}\right ) \, dx}{2 \log ^2(2)}\\ &=\frac {\int \frac {e^{1+x} (-1+x)}{x^2} \, dx}{2 \log ^2(2)}-\frac {\int \frac {e^{\frac {1}{2}+\frac {x}{2}} \left (-6+3 x+2 x^2\right )}{x^2} \, dx}{2 \log ^2(2)}+\frac {\int \frac {-9+4 x^2+5 \log ^2(2)}{x^2} \, dx}{2 \log ^2(2)}\\ &=\frac {e^{1+x}}{2 x \log ^2(2)}-\frac {\int \left (2 e^{\frac {1}{2}+\frac {x}{2}}-\frac {6 e^{\frac {1}{2}+\frac {x}{2}}}{x^2}+\frac {3 e^{\frac {1}{2}+\frac {x}{2}}}{x}\right ) \, dx}{2 \log ^2(2)}+\frac {\int \left (4+\frac {-9+5 \log ^2(2)}{x^2}\right ) \, dx}{2 \log ^2(2)}\\ &=-\frac {5-\frac {9}{\log ^2(2)}}{2 x}+\frac {e^{1+x}}{2 x \log ^2(2)}+\frac {2 x}{\log ^2(2)}-\frac {\int e^{\frac {1}{2}+\frac {x}{2}} \, dx}{\log ^2(2)}-\frac {3 \int \frac {e^{\frac {1}{2}+\frac {x}{2}}}{x} \, dx}{2 \log ^2(2)}+\frac {3 \int \frac {e^{\frac {1}{2}+\frac {x}{2}}}{x^2} \, dx}{\log ^2(2)}\\ &=-\frac {5-\frac {9}{\log ^2(2)}}{2 x}-\frac {2 e^{\frac {1}{2}+\frac {x}{2}}}{\log ^2(2)}-\frac {3 e^{\frac {1}{2}+\frac {x}{2}}}{x \log ^2(2)}+\frac {e^{1+x}}{2 x \log ^2(2)}+\frac {2 x}{\log ^2(2)}-\frac {3 \sqrt {e} \text {Ei}\left (\frac {x}{2}\right )}{2 \log ^2(2)}+\frac {3 \int \frac {e^{\frac {1}{2}+\frac {x}{2}}}{x} \, dx}{2 \log ^2(2)}\\ &=-\frac {5-\frac {9}{\log ^2(2)}}{2 x}-\frac {2 e^{\frac {1}{2}+\frac {x}{2}}}{\log ^2(2)}-\frac {3 e^{\frac {1}{2}+\frac {x}{2}}}{x \log ^2(2)}+\frac {e^{1+x}}{2 x \log ^2(2)}+\frac {2 x}{\log ^2(2)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 45, normalized size = 1.41 \begin {gather*} \frac {9+e^{1+x}+4 x^2-2 e^{\frac {1+x}{2}} (3+2 x)-5 \log ^2(2)}{2 x \log ^2(2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.45, size = 39, normalized size = 1.22 \begin {gather*} \frac {4 \, x^{2} - 2 \, {\left (2 \, x + 3\right )} e^{\left (\frac {1}{2} \, x + \frac {1}{2}\right )} - 5 \, \log \relax (2)^{2} + e^{\left (x + 1\right )} + 9}{2 \, x \log \relax (2)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 43, normalized size = 1.34 \begin {gather*} \frac {4 \, x^{2} - 4 \, x e^{\left (\frac {1}{2} \, x + \frac {1}{2}\right )} - 5 \, \log \relax (2)^{2} + e^{\left (x + 1\right )} - 6 \, e^{\left (\frac {1}{2} \, x + \frac {1}{2}\right )} + 9}{2 \, x \log \relax (2)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.11, size = 56, normalized size = 1.75
method | result | size |
risch | \(\frac {2 x}{\ln \relax (2)^{2}}-\frac {5}{2 x}+\frac {9}{2 \ln \relax (2)^{2} x}+\frac {{\mathrm e}^{x +1}}{2 \ln \relax (2)^{2} x}-\frac {\left (2 x +3\right ) {\mathrm e}^{\frac {x}{2}+\frac {1}{2}}}{\ln \relax (2)^{2} x}\) | \(56\) |
derivativedivides | \(\frac {\frac {9}{2 x}+2 x +2-\frac {3 \,{\mathrm e}^{\frac {x}{2}+\frac {1}{2}}}{x}+\frac {{\mathrm e}^{x +1}}{2 x}-\frac {5 \ln \relax (2)^{2}}{2 x}-2 \,{\mathrm e}^{\frac {x}{2}+\frac {1}{2}}}{\ln \relax (2)^{2}}\) | \(57\) |
default | \(\frac {\frac {9}{x}+4 x +4-\frac {6 \,{\mathrm e}^{\frac {x}{2}+\frac {1}{2}}}{x}+\frac {{\mathrm e}^{x +1}}{x}-\frac {5 \ln \relax (2)^{2}}{x}-4 \,{\mathrm e}^{\frac {x}{2}+\frac {1}{2}}}{2 \ln \relax (2)^{2}}\) | \(57\) |
norman | \(\frac {\frac {2 x^{2}}{\ln \relax (2)}-\frac {5 \ln \relax (2)^{2}-9}{2 \ln \relax (2)}-\frac {3 \,{\mathrm e}^{\frac {x}{2}+\frac {1}{2}}}{\ln \relax (2)}+\frac {{\mathrm e}^{x +1}}{2 \ln \relax (2)}-\frac {2 x \,{\mathrm e}^{\frac {x}{2}+\frac {1}{2}}}{\ln \relax (2)}}{x \ln \relax (2)}\) | \(72\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.40, size = 63, normalized size = 1.97 \begin {gather*} \frac {{\rm Ei}\relax (x) e - 3 \, {\rm Ei}\left (\frac {1}{2} \, x\right ) e^{\frac {1}{2}} + 3 \, e^{\frac {1}{2}} \Gamma \left (-1, -\frac {1}{2} \, x\right ) - e \Gamma \left (-1, -x\right ) + 4 \, x - \frac {5 \, \log \relax (2)^{2}}{x} + \frac {9}{x} - 4 \, e^{\left (\frac {1}{2} \, x + \frac {1}{2}\right )}}{2 \, \log \relax (2)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 43, normalized size = 1.34 \begin {gather*} \frac {{\mathrm {e}}^{x+1}-6\,{\mathrm {e}}^{\frac {x}{2}+\frac {1}{2}}-4\,x\,{\mathrm {e}}^{\frac {x}{2}+\frac {1}{2}}-5\,{\ln \relax (2)}^2+4\,x^2+9}{2\,x\,{\ln \relax (2)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.19, size = 70, normalized size = 2.19 \begin {gather*} \frac {4 x + \frac {9 - 5 \log {\relax (2 )}^{2}}{x}}{2 \log {\relax (2 )}^{2}} + \frac {x e^{x + 1} \log {\relax (2 )}^{2} + \left (- 4 x^{2} \log {\relax (2 )}^{2} - 6 x \log {\relax (2 )}^{2}\right ) e^{\frac {x}{2} + \frac {1}{2}}}{2 x^{2} \log {\relax (2 )}^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________